Home
Class 12
MATHS
If alpha, beta are the roots of 3x^(2) +...

If `alpha, beta` are the roots of `3x^(2) + 5x - 7 = 0` then `(1)/(3alpha+5)^(2)+ (1)/(3beta+5)^(2)=`

A

a) `-(17)/(21)`

B

b) `(67)/(21)`

C

c) `(67)/(441)`

D

d) `(76)/(441)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ \frac{1}{(3\alpha + 5)^2} + \frac{1}{(3\beta + 5)^2} \] where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \[ 3x^2 + 5x - 7 = 0. \] ### Step 1: Find the roots \(\alpha\) and \(\beta\) We can use the quadratic formula to find the roots of the equation: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 3\), \(b = 5\), and \(c = -7\). Calculating the discriminant: \[ b^2 - 4ac = 5^2 - 4 \cdot 3 \cdot (-7) = 25 + 84 = 109. \] Now substituting into the quadratic formula: \[ x = \frac{-5 \pm \sqrt{109}}{2 \cdot 3} = \frac{-5 \pm \sqrt{109}}{6}. \] Thus, the roots are: \[ \alpha = \frac{-5 + \sqrt{109}}{6}, \quad \beta = \frac{-5 - \sqrt{109}}{6}. \] ### Step 2: Calculate \(3\alpha + 5\) and \(3\beta + 5\) Calculating \(3\alpha + 5\): \[ 3\alpha + 5 = 3\left(\frac{-5 + \sqrt{109}}{6}\right) + 5 = \frac{-15 + 3\sqrt{109}}{6} + 5 = \frac{-15 + 3\sqrt{109} + 30}{6} = \frac{3\sqrt{109} + 15}{6} = \frac{3(\sqrt{109} + 5)}{6} = \frac{\sqrt{109} + 5}{2}. \] Now for \(3\beta + 5\): \[ 3\beta + 5 = 3\left(\frac{-5 - \sqrt{109}}{6}\right) + 5 = \frac{-15 - 3\sqrt{109}}{6} + 5 = \frac{-15 - 3\sqrt{109} + 30}{6} = \frac{-3\sqrt{109} + 15}{6} = \frac{15 - 3\sqrt{109}}{6} = \frac{3(5 - \sqrt{109})}{6} = \frac{5 - \sqrt{109}}{2}. \] ### Step 3: Calculate \(\frac{1}{(3\alpha + 5)^2} + \frac{1}{(3\beta + 5)^2}\) Now we need to calculate: \[ \frac{1}{(3\alpha + 5)^2} + \frac{1}{(3\beta + 5)^2} = \frac{1}{\left(\frac{\sqrt{109} + 5}{2}\right)^2} + \frac{1}{\left(\frac{5 - \sqrt{109}}{2}\right)^2}. \] This simplifies to: \[ \frac{4}{(\sqrt{109} + 5)^2} + \frac{4}{(5 - \sqrt{109})^2} = 4\left(\frac{1}{(\sqrt{109} + 5)^2} + \frac{1}{(5 - \sqrt{109})^2}\right). \] ### Step 4: Combine the fractions Let \(A = \sqrt{109} + 5\) and \(B = 5 - \sqrt{109}\). Then we have: \[ \frac{1}{A^2} + \frac{1}{B^2} = \frac{B^2 + A^2}{A^2B^2}. \] Calculating \(A^2 + B^2\): \[ A^2 + B^2 = (\sqrt{109} + 5)^2 + (5 - \sqrt{109})^2 = (109 + 10\sqrt{109} + 25) + (25 - 10\sqrt{109} + 109) = 2(109 + 25) = 268. \] Calculating \(A^2B^2\): \[ A^2B^2 = (\sqrt{109} + 5)^2(5 - \sqrt{109})^2 = (A^2)(B^2) = (A+B)^2 - 2AB = (10)^2 - 2(25 - 109) = 100 - 2(-84) = 100 + 168 = 268. \] Thus, \[ \frac{1}{A^2} + \frac{1}{B^2} = \frac{268}{268} = 1. \] Finally, we have: \[ 4\left(\frac{1}{A^2} + \frac{1}{B^2}\right) = 4 \cdot 1 = 4. \] ### Final Answer Thus, the value is: \[ \frac{67}{441}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If alpha, beta are the roots of x^2 - sqrt(3)x + 1 = 0 then alpha^(21) + beta^(21) is:

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha and beta are the root of the equation x^(2) - 4x + 5 = 0 , then alpha^(2) + beta^(2) = ________

If alpha,beta be the roots of x^(2)-a(x-1)+b=0 , then the value of (1)/(alpha^(2)-a alpha)+(1)/(beta^(2)-a beta)+(2)/(a+b) is

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha, beta are the roots of 2x^(2) + 5x + 2 = 0 , then the equation with roots (1)/(alpha+1), (1)/(beta+1) is

if alpha , beta be the roots of x^(2) -(a -2) x -a-1 =0 then the least value of alpha^(2) + beta^(2) is (1) 0 (2) 1 (3) 3 (4) 5

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =