Home
Class 12
MATHS
If tan^(2)theta, sec^(2)theta are the ro...

If `tan^(2)theta, sec^(2)theta` are the roots of `ax^(2)+bx+c=0` then `b^(2)- a^(2) =`

A

4ac

B

`a^(2)`

C

`4bc`

D

4ab

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( b^2 - a^2 \) given that \( \tan^2 \theta \) and \( \sec^2 \theta \) are the roots of the quadratic equation \( ax^2 + bx + c = 0 \). ### Step-by-step Solution: 1. **Identify the Roots**: Let \( \alpha = \tan^2 \theta \) and \( \beta = \sec^2 \theta \). 2. **Use the Sum and Product of Roots**: From the properties of quadratic equations, we know: - The sum of the roots \( \alpha + \beta = -\frac{b}{a} \) - The product of the roots \( \alpha \beta = \frac{c}{a} \) 3. **Calculate the Sum of Roots**: \[ \alpha + \beta = \tan^2 \theta + \sec^2 \theta \] Using the identity \( \sec^2 \theta = 1 + \tan^2 \theta \), we can rewrite: \[ \tan^2 \theta + \sec^2 \theta = \tan^2 \theta + (1 + \tan^2 \theta) = 2\tan^2 \theta + 1 \] Thus, we have: \[ -\frac{b}{a} = 2\tan^2 \theta + 1 \] 4. **Calculate the Product of Roots**: \[ \alpha \beta = \tan^2 \theta \cdot \sec^2 \theta = \tan^2 \theta \cdot (1 + \tan^2 \theta) = \tan^2 \theta + \tan^4 \theta \] Thus, we have: \[ \frac{c}{a} = \tan^2 \theta + \tan^4 \theta \] 5. **Use the Identity**: We can use the identity: \[ (\alpha + \beta)^2 = (\alpha - \beta)^2 + 4\alpha\beta \] Substituting the values: \[ \left(-\frac{b}{a}\right)^2 = (\sec^2 \theta - \tan^2 \theta)^2 + 4\left(\frac{c}{a}\right) \] 6. **Evaluate \( \sec^2 \theta - \tan^2 \theta \)**: Using the identity \( \sec^2 \theta - \tan^2 \theta = 1 \): \[ \left(-\frac{b}{a}\right)^2 = 1 + 4\left(\frac{c}{a}\right) \] Thus: \[ \frac{b^2}{a^2} = 1 + \frac{4c}{a} \] 7. **Cross-Multiply**: \[ b^2 = a^2 + 4ac \] 8. **Rearranging**: Now, we can rearrange this to find \( b^2 - a^2 \): \[ b^2 - a^2 = 4ac \] ### Final Result: Thus, the value of \( b^2 - a^2 \) is: \[ \boxed{4ac} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin thetaand cos theta are the roots of the equation ax^(2)-bx+c=0, then

If the tan theta and sec theta are roots of the equation ax^(2)+bx+c=0, then

If sin theta, cos theta are the roots of the equation ax^(2)+bx+c=0 then find the value of ((a+c)^(2))/(b^(2)+c^(2))

If 1+ tan^(2) theta = sec^(2) theta then find (sec theta + tan theta)

alpha,beta are the roots of ax^(2)+2bx+c=0 and alpha+delta,beta+delta are the roots of A x^(2)+2Bx+C=0 , then what is (b^(2)-ac)//(B^(2)-AC) equal to ?

If sin theta and - cos theta are the roots of the equation ax^2-bx-c=0 where a, b and c the side of a triangle ABC , then cos B is equal to :-

If sin theta and -cos theta are the roots of the equation ax^(2) - bx - c = 0 , where a, b, and c are the sides of a triangle ABC, then cos B is equal to

If asin^(2)theta+bcos^(2)theta=c , then prove that tan^(2)theta=(c-b)/(a-c)

If the roots of ax^(2) + bx + c = 0 are 2, (3)/(2) then (a+b+c)^(2)

If sin theta and cos theta are the roots of the quadratic equation ax ^(2) +bx + c=0(a ne 0). Then find the value of (b ^(2) -a^(2))/(ac ).