Home
Class 12
MATHS
If alpha, beta are the roots of x^(2) +...

If `alpha, beta` are the roots of `x^(2) + x + 3=0` then `5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=`

A

0

B

-1

C

-2

D

-3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(5\alpha + \alpha^4 + \alpha^3 + 3\alpha^2 + 5\beta + 3\), given that \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(x^2 + x + 3 = 0\). ### Step-by-Step Solution: 1. **Identify the roots**: The roots of the equation \(x^2 + x + 3 = 0\) can be identified using Vieta's formulas: - The sum of the roots \(\alpha + \beta = -\frac{b}{a} = -\frac{1}{1} = -1\). - The product of the roots \(\alpha \beta = \frac{c}{a} = \frac{3}{1} = 3\). 2. **Rewrite the expression**: We need to find the value of: \[ 5\alpha + \alpha^4 + \alpha^3 + 3\alpha^2 + 5\beta + 3 \] We can group the terms involving \(\alpha\) and \(\beta\): \[ = 5(\alpha + \beta) + \alpha^4 + \alpha^3 + 3\alpha^2 + 3 \] 3. **Substitute \(\alpha + \beta\)**: Substitute \(\alpha + \beta = -1\): \[ = 5(-1) + \alpha^4 + \alpha^3 + 3\alpha^2 + 3 \] \[ = -5 + \alpha^4 + \alpha^3 + 3\alpha^2 + 3 \] \[ = \alpha^4 + \alpha^3 + 3\alpha^2 - 2 \] 4. **Use the original equation**: Since \(\alpha\) is a root of the equation \(x^2 + x + 3 = 0\), we have: \[ \alpha^2 + \alpha + 3 = 0 \implies \alpha^2 = -\alpha - 3 \] 5. **Calculate \(\alpha^3\) and \(\alpha^4\)**: - To find \(\alpha^3\): \[ \alpha^3 = \alpha \cdot \alpha^2 = \alpha(-\alpha - 3) = -\alpha^2 - 3\alpha \] Substitute \(\alpha^2 = -\alpha - 3\): \[ \alpha^3 = -(-\alpha - 3) - 3\alpha = \alpha + 3 - 3\alpha = -2\alpha + 3 \] - To find \(\alpha^4\): \[ \alpha^4 = \alpha \cdot \alpha^3 = \alpha(-2\alpha + 3) = -2\alpha^2 + 3\alpha \] Substitute \(\alpha^2 = -\alpha - 3\): \[ \alpha^4 = -2(-\alpha - 3) + 3\alpha = 2\alpha + 6 + 3\alpha = 5\alpha + 6 \] 6. **Substitute back into the expression**: Now substitute \(\alpha^3\) and \(\alpha^4\) into the expression: \[ = (5\alpha + 6) + (-2\alpha + 3) + 3(-\alpha - 3) - 2 \] Simplifying this: \[ = 5\alpha + 6 - 2\alpha + 3 - 3\alpha - 9 - 2 \] \[ = (5\alpha - 2\alpha - 3\alpha) + (6 + 3 - 9 - 2) \] \[ = 0\alpha + (-2) = -2 \] ### Final Answer: Thus, the value of the expression \(5\alpha + \alpha^4 + \alpha^3 + 3\alpha^2 + 5\beta + 3\) is \(-2\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^(2) - x + 3 = 0 , then alpha^(4) +beta^(4) =

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If alpha , beta are the roots of ax^(2) + bx +c=0 , then (alpha^(3) + beta^(3))/(alpha^(-3) + beta^(-3)) is equal to :

If alpha, beta are the rootsof 6x^(2)-4sqrt2 x-3=0 , then alpha^(2)beta+alpha beta^(2) is

If alpha , beta are the roots of ax ^2 + bx +c=0 then alpha ^5 beta ^8 + alpha^8 beta ^5=

If alpha, beta are the roots of x^2 - sqrt(3)x + 1 = 0 then alpha^(21) + beta^(21) is:

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta

If alpha, beta are the roots of 3x^(2) + 5x - 7 = 0 then (1)/(3alpha+5)^(2)+ (1)/(3beta+5)^(2)=

If alpha, beta are the roots of x^(2)-px+q=0 then (alpha+beta)x-(alpha^(2)+beta^(2))(x^(2))/(2)+(alpha^(3)+beta^(3))(x^(3))/(3)-….oo=

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____