Home
Class 12
MATHS
If omega is an imaginary cube root of un...

If `omega` is an imaginary cube root of unity then the equation whose roots are `2omega + 3omega^(2)` and `2omega^(2) + 3omega` is

A

a) `x^(2)+5x+7=0`

B

b) `x^(2)+5x-7=0`

C

c) `x^(2)-5x+7=0`

D

d) `x^(2)-5x-7=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation whose roots are \(2\omega + 3\omega^2\) and \(2\omega^2 + 3\omega\), where \(\omega\) is an imaginary cube root of unity, we will follow these steps: ### Step 1: Identify the Roots The roots given are: 1. \( r_1 = 2\omega + 3\omega^2 \) 2. \( r_2 = 2\omega^2 + 3\omega \) ### Step 2: Calculate the Sum of the Roots The sum of the roots \( S \) is given by: \[ S = r_1 + r_2 = (2\omega + 3\omega^2) + (2\omega^2 + 3\omega) \] Combining like terms: \[ S = (2\omega + 3\omega) + (3\omega^2 + 2\omega^2) = 5\omega + 5\omega^2 = 5(\omega + \omega^2) \] ### Step 3: Use the Property of Cube Roots of Unity Since \(\omega\) is a cube root of unity, we know: \[ \omega + \omega^2 + 1 = 0 \implies \omega + \omega^2 = -1 \] Thus, substituting this into our sum: \[ S = 5(-1) = -5 \] ### Step 4: Calculate the Product of the Roots The product of the roots \( P \) is given by: \[ P = r_1 \cdot r_2 = (2\omega + 3\omega^2)(2\omega^2 + 3\omega) \] Expanding this product: \[ P = 2\omega \cdot 2\omega^2 + 2\omega \cdot 3\omega + 3\omega^2 \cdot 2\omega^2 + 3\omega^2 \cdot 3\omega \] Calculating each term: 1. \( 2\omega \cdot 2\omega^2 = 4\omega^3 = 4(-1) = -4 \) (since \(\omega^3 = 1\)) 2. \( 2\omega \cdot 3\omega = 6\omega^2 \) 3. \( 3\omega^2 \cdot 2\omega^2 = 6\omega^4 = 6\omega \) (since \(\omega^4 = \omega\)) 4. \( 3\omega^2 \cdot 3\omega = 9\omega^3 = 9(-1) = -9 \) Combining these results: \[ P = -4 + 6\omega + 6\omega - 9 = -13 + 12\omega \] ### Step 5: Substitute \(\omega + \omega^2\) into the Product Using \(\omega + \omega^2 = -1\): \[ P = -13 + 12(-1) = -13 - 12 = -25 \] ### Step 6: Form the Quadratic Equation The quadratic equation with roots \( r_1 \) and \( r_2 \) can be expressed as: \[ x^2 - Sx + P = 0 \] Substituting the values of \( S \) and \( P \): \[ x^2 + 5x - 25 = 0 \] ### Final Equation Thus, the equation whose roots are \(2\omega + 3\omega^2\) and \(2\omega^2 + 3\omega\) is: \[ x^2 + 5x - 25 = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then omega^(3) = ……

If omega is an imaginary cube root of unity, then show that (1-omega+omega^2)^5+(1+omega-omega^2)^5 =32

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is an imaginary cube root of unity, then the value of |(a,b omega^(2),a omega),(b omega,c,b omega^(2)),(c omega^(2),a omega,c)| , is

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega is an imaginary cube root of unity, then show that (1-omega)(1-omega^2)(1-omega^4) (1-omega^5)=9

If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to 128omega (b) -128omega 128omega^2 (d) -128omega^2