Home
Class 12
MATHS
IF 20 ^(3- 2x^2 = ( 40 sqrt(5) ) ^(...

IF ` 20 ^(3- 2x^2 = ( 40 sqrt(5) ) ^(3x^2-2)`, then x=

A

`+- sqrt((13)/(12))`

B

`+- sqrt((12)/(13))`

C

`+- sqrt((4)/(5))`

D

`+- sqrt((5)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 20^{3 - 2x^2} = (40 \sqrt{5})^{3x^2 - 2} \), we will follow these steps: ### Step 1: Rewrite the bases We know that \( 40 \sqrt{5} \) can be expressed in terms of \( 20 \): \[ 40 \sqrt{5} = 20 \cdot 2 \sqrt{5} = 20 \cdot \sqrt{20} \] Thus, we can rewrite the equation as: \[ 20^{3 - 2x^2} = (20 \cdot \sqrt{20})^{3x^2 - 2} \] ### Step 2: Simplify the right-hand side Now we can express \( (20 \cdot \sqrt{20})^{3x^2 - 2} \): \[ (20 \cdot \sqrt{20})^{3x^2 - 2} = 20^{3x^2 - 2} \cdot (\sqrt{20})^{3x^2 - 2} \] Since \( \sqrt{20} = 20^{1/2} \), we have: \[ (\sqrt{20})^{3x^2 - 2} = (20^{1/2})^{3x^2 - 2} = 20^{(3x^2 - 2)/2} \] Thus, the right-hand side becomes: \[ 20^{3x^2 - 2} \cdot 20^{(3x^2 - 2)/2} = 20^{3x^2 - 2 + (3x^2 - 2)/2} \] ### Step 3: Combine the exponents To combine the exponents on the right-hand side: \[ 3x^2 - 2 + \frac{3x^2 - 2}{2} = 3x^2 - 2 + \frac{3x^2}{2} - 1 = \frac{6x^2 - 4 + 3x^2 - 2}{2} = \frac{9x^2 - 6}{2} \] So we can rewrite the equation as: \[ 20^{3 - 2x^2} = 20^{\frac{9x^2 - 6}{2}} \] ### Step 4: Set the exponents equal to each other Since the bases are the same, we can set the exponents equal to each other: \[ 3 - 2x^2 = \frac{9x^2 - 6}{2} \] ### Step 5: Clear the fraction To eliminate the fraction, multiply both sides by 2: \[ 2(3 - 2x^2) = 9x^2 - 6 \] This simplifies to: \[ 6 - 4x^2 = 9x^2 - 6 \] ### Step 6: Rearrange the equation Now, rearranging gives: \[ 6 + 6 = 9x^2 + 4x^2 \] \[ 12 = 13x^2 \] ### Step 7: Solve for \( x^2 \) Dividing both sides by 13: \[ x^2 = \frac{12}{13} \] ### Step 8: Solve for \( x \) Taking the square root of both sides, we find: \[ x = \pm \sqrt{\frac{12}{13}} = \pm \frac{2\sqrt{3}}{\sqrt{13}} \] ### Final Answer Thus, the value of \( x \) is: \[ x = \pm \frac{2\sqrt{3}}{\sqrt{13}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise : 2sqrt(3)x^(2) + x - 5sqrt(3)

Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5

Given x, y in R , x^(2) + y^(2) gt 0 . Then the range of (x^(2) + y^(2))/(x^(2) + xy + 4y^(2)) is (a) ((10 - 4 sqrt(5))/(3),(10 + 4 sqrt(5))/(3)) (b) ((10 - 4 sqrt(5))/(15),(10 + 4 sqrt(5))/(15)) (c) ((5- 4 sqrt(5))/(15),(5 + 4 sqrt(5))/(15)) (d) ((20- 4 sqrt(5))/(15),(20 + 4 sqrt(5))/(15))

Find the roots of the following quadratic equations i) 6sqrt5 x^(2) – 9x -3sqrt5 = 0 ii) x^(2) - x - 12 = 0 iii) 2x^(2) - 6x + 7 = 0 iv) 4x^(2) - 4x+17 = 3x^(2) -10x-17 v) x^(2) + 6x + 34 = 0 vi) 3x^(2) + 2x - 5 = 0

Solve : 3x + 2 (x+2) = 20 - (2x -5)

If (1+x+x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then following questions. The value of a_(0) + 3a_(1) + 5a_(2) + "……" + 81a_(40) is

Which of the following equations has the sum of its roots as 3? (a) x^2+3x-5=0 (b) -x^2+3x+3=0 (c) sqrt(2)x^2-3/(sqrt(2))x-1=0 (d) 3x^2-3x-3=0

If (x ^(2) +x+1) + (x^(2) + 2x +3) + (x^(2) + 3x +5) + ….. + (x ^(2) + 20x + 39) =4500, then x is equal to :

min[(x_1-x_2)^2+(5+sqrt(1-x_1^2)-sqrt(4x_2))^2],AAx_1,x_2 in R , is (a) 4sqrt(5)-1 (b) 3-2sqrt(2) (c) sqrt(5)+1 (d) sqrt(5)-1

Factorize: 2x^2+3\ sqrt(5)\ x+5