Home
Class 12
MATHS
If |x^(2)| + |x| + 12 = 0, then x =...

If `|x^(2)| + |x| + 12 = 0`, then x =

A

3 or - 4

B

-3 or -4

C

`+-3` or `+-4`

D

No solution

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2) - x - 1)^(x^(2) - 7x + 12) = 1 then

Find the roots of the following quadratic equations i) 6sqrt5 x^(2) – 9x -3sqrt5 = 0 ii) x^(2) - x - 12 = 0 iii) 2x^(2) - 6x + 7 = 0 iv) 4x^(2) - 4x+17 = 3x^(2) -10x-17 v) x^(2) + 6x + 34 = 0 vi) 3x^(2) + 2x - 5 = 0

The equation of the circle which, passes through the point (-2, -3) and has its centre on the negative direction of x-axis and is of radius 5 units is (i) x^(2) + y^(2) + 12 x + 11 = 0 (ii) x^(2) + y^(2) - 12 x + 11 = 0 (iii) x^(2) + y^(2) - 12 x - 11 = 0 (iv) x^(2) + y^(2) + 12 x - 11 = 0

Let cos alpha be a root of the equation 25x^(2) +5x -12 = 0 -1 lt x lt 0 ,then the value of sin^(2)alpha is

If x^(2)+y^(2)+6x-4y-12=0 then find the ragne of 2x+y

If the average of 2x and 4x is 12, then x =

Is {x : x^(2) - 7x + 12=0} = {3,4} ?

Find the roots of 3x^(2) - 5x - 12 = 0 .

Solve : (i) x^(2)-11x-12=0 , when xepsilonN (ii) x^(2)-4x-12=0 , when xepsilonI (iii) 2x^(2)-9x+10=0 , when xepsilonQ .

The circles x^2 + y^2 + 6x + 6y = 0 and x^2 + y^2 - 12x - 12y = 0