Home
Class 12
MATHS
The equation e^(sin x)-e^(-sin x)-4=0 ha...

The equation `e^(sin x)-e^(-sin x)-4=0` has

A

Infinite number of real roots

B

no real roots

C

exactly one real root

D

exactly four real roots.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( e^{\sin x} - e^{-\sin x} - 4 = 0 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ e^{\sin x} - e^{-\sin x} - 4 = 0 \] We can rewrite it as: \[ e^{\sin x} - \frac{1}{e^{\sin x}} - 4 = 0 \] ### Step 2: Substitute \( t \) Let \( t = e^{\sin x} \). Then, we can rewrite the equation as: \[ t - \frac{1}{t} - 4 = 0 \] Multiplying through by \( t \) (assuming \( t \neq 0 \)): \[ t^2 - 1 - 4t = 0 \] ### Step 3: Rearrange the equation Rearranging gives us a standard quadratic equation: \[ t^2 - 4t - 1 = 0 \] ### Step 4: Apply the quadratic formula We will use the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -4, c = -1 \): \[ t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] Calculating the discriminant: \[ t = \frac{4 \pm \sqrt{16 + 4}}{2} \] \[ t = \frac{4 \pm \sqrt{20}}{2} \] \[ t = \frac{4 \pm 2\sqrt{5}}{2} \] \[ t = 2 \pm \sqrt{5} \] ### Step 5: Determine valid solutions for \( t \) Since \( t = e^{\sin x} \) must be positive, we only consider: \[ t = 2 + \sqrt{5} \] We discard \( t = 2 - \sqrt{5} \) because \( 2 - \sqrt{5} < 0 \). ### Step 6: Solve for \( \sin x \) Now, we substitute back to find \( \sin x \): \[ e^{\sin x} = 2 + \sqrt{5} \] Taking the natural logarithm of both sides: \[ \sin x = \ln(2 + \sqrt{5}) \] ### Step 7: Analyze the value of \( \sin x \) Next, we need to check if \( \ln(2 + \sqrt{5}) \) is within the range of the sine function, which is \([-1, 1]\). Calculating \( 2 + \sqrt{5} \): \[ \sqrt{5} \approx 2.236 \implies 2 + \sqrt{5} \approx 4.236 \] Thus: \[ \ln(2 + \sqrt{5}) \approx \ln(4.236) \approx 1.446 \] Since \( \ln(2 + \sqrt{5}) > 1 \), it is not possible for \( \sin x \) to take this value. ### Conclusion Since \( \sin x \) cannot be greater than 1, the equation \( e^{\sin x} - e^{-\sin x} - 4 = 0 \) has no real solutions. ### Final Answer The equation has **no real roots**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

no.of solutions of the equation e^(sin""x)- e^( -sin""x)-4""=""0

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

The equation e^(sin^(-1)x)/pi=y/(log y) has

If e^(sin x)-e^(-sin x)-4=0 , then x= (a) 0 (b) sin^(-1){(log)_e(2+sqrt(5))} (c) 1 (d) none of these

For x in (0,pi) the equation sinx+2sin2x-sin3x=3 has

The equation |"sin" x| = "sin" x + 3"has in" [0, 2pi]

Between any two real roots of the equation e^(x)sinx-1=0 the equation e^(x)cosx+1=0 has

int sin x*cos x*e^(sin x)*dx

int (sin 2x- 4e^(3x))dx

For x∈(0,π) , the equation sinx+2sin2x−sin3x=3 , has