Home
Class 12
MATHS
If x is real then the range of (x^(2)-2x...

If x is real then the range of `(x^(2)-2x+9)/(x^(2)+2x+9)` is

A

`(-oo, 0] uu (1, oo)`

B

`[(1)/(2), 2]`

C

`(-oo, -(2)/(9)]uu(1, oo)`

D

`(-oo, -6]uu[-2, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( y = \frac{x^2 - 2x + 9}{x^2 + 2x + 9} \), we will follow these steps: ### Step 1: Set up the equation Let \( y = \frac{x^2 - 2x + 9}{x^2 + 2x + 9} \). ### Step 2: Rearranging the equation We can rearrange this equation to eliminate the fraction: \[ y(x^2 + 2x + 9) = x^2 - 2x + 9 \] This simplifies to: \[ yx^2 + 2yx + 9y = x^2 - 2x + 9 \] ### Step 3: Collecting like terms Rearranging gives us: \[ (y - 1)x^2 + (2y + 2)x + (9y - 9) = 0 \] This is a quadratic equation in \( x \). ### Step 4: Finding the discriminant For \( x \) to be real, the discriminant of this quadratic must be non-negative: \[ D = b^2 - 4ac \] Here, \( a = y - 1 \), \( b = 2y + 2 \), and \( c = 9y - 9 \). Thus, the discriminant is: \[ D = (2y + 2)^2 - 4(y - 1)(9y - 9) \] ### Step 5: Expanding the discriminant Calculating \( D \): \[ D = (2y + 2)^2 - 4(y - 1)(9y - 9) \] Expanding \( (2y + 2)^2 \): \[ D = 4y^2 + 8y + 4 \] Now expanding \( 4(y - 1)(9y - 9) \): \[ 4(y - 1)(9y - 9) = 36y^2 - 36y - 36 \] Thus, the discriminant becomes: \[ D = 4y^2 + 8y + 4 - (36y^2 - 36y - 36) \] \[ D = 4y^2 + 8y + 4 - 36y^2 + 36y + 36 \] Combining like terms: \[ D = -32y^2 + 44y + 40 \] ### Step 6: Setting the discriminant greater than or equal to zero We need: \[ -32y^2 + 44y + 40 \geq 0 \] Dividing through by -4 (and reversing the inequality): \[ 8y^2 - 11y - 10 \leq 0 \] ### Step 7: Finding the roots of the quadratic Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{11 \pm \sqrt{(-11)^2 - 4 \cdot 8 \cdot (-10)}}{2 \cdot 8} \] Calculating the discriminant: \[ 121 + 320 = 441 \] Thus: \[ y = \frac{11 \pm 21}{16} \] Calculating the two roots: 1. \( y = \frac{32}{16} = 2 \) 2. \( y = \frac{-10}{16} = -\frac{5}{8} \) ### Step 8: Testing intervals We need to test the intervals determined by the roots \( y = -\frac{5}{8} \) and \( y = 2 \): - For \( y < -\frac{5}{8} \): \( 8y^2 - 11y - 10 > 0 \) - For \( -\frac{5}{8} < y < 2 \): \( 8y^2 - 11y - 10 \leq 0 \) - For \( y > 2 \): \( 8y^2 - 11y - 10 > 0 \) ### Conclusion: Range of the function The range of the function is: \[ y \in \left[-\frac{5}{8}, 2\right] \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x in R, then the range of (x)/(x^(2)-5x + 9) is

If x is real, then range of (3x -2)/(7x+5) is :

If x is real , then the maximum value of (x^(2)+14x+9)/(x^(2)+2x+3) is

Given that for all real x, the expression (x^(2)-2x+4)/(x^(2)+2x+4) lies between (1)/(3) and 3 the values between which the expression (9tan^(2)x+6tanx+4)/(9tan^(2)x-6tanx+4) lies are

If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is (a) (17)/(7) (b) (1)/(4) (c) 41 (d) 1

If x is a real, then the maximum value (x^2+14x+9)/(x^2+2x+3) (i)2 (ii)4 (iii)6 (iv) 8

If x is real, then minimum vlaue of (3x ^(2) + 9x +17)/(3x ^(2) +9x+7) is:

Find the range of y=(x+3)/(2x^(2) + 3x+9) , if x is real.

If x is real, then the value of the expression (x^2+14 x+9)/(x^2+2x+3) lies between

If x is real, then the value of the expression (x^2+14x+9)/(x^2+2x+3) lies between (a) 5 and 4 (b) 5 and -4 (c) -5 and 4 (d) none of these