Home
Class 12
MATHS
IF sqrt(9x^2 + 6x +1) lt (2-x) then...

IF `sqrt(9x^2 + 6x +1) lt (2-x)` then

A

`((-3)/(2), (1)/(4))`

B

`[(-3)/(2), (1)/(4))`

C

`((-3)/(2), (1)/(4)]`

D

(0, 2)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \sqrt{9x^2 + 6x + 1} < 2 - x \), we will follow these steps: ### Step 1: Square both sides To eliminate the square root, we square both sides of the inequality: \[ 9x^2 + 6x + 1 < (2 - x)^2 \] ### Step 2: Expand the right side Now, we expand the right side: \[ (2 - x)^2 = 4 - 4x + x^2 \] Thus, the inequality becomes: \[ 9x^2 + 6x + 1 < 4 - 4x + x^2 \] ### Step 3: Rearrange the inequality Next, we move all terms to one side: \[ 9x^2 + 6x + 1 - 4 + 4x - x^2 < 0 \] This simplifies to: \[ (9x^2 - x^2) + (6x + 4x) + (1 - 4) < 0 \] \[ 8x^2 + 10x - 3 < 0 \] ### Step 4: Factor the quadratic expression Now we need to factor the quadratic expression \( 8x^2 + 10x - 3 \). We can do this by finding two numbers that multiply to \( 8 \times (-3) = -24 \) and add to \( 10 \). The numbers are \( 12 \) and \( -2 \). Thus, we can rewrite the expression: \[ 8x^2 + 12x - 2x - 3 < 0 \] Now, we group the terms: \[ 4x(2x + 3) - 1(2x + 3) < 0 \] Factoring out \( (2x + 3) \): \[ (2x + 3)(4x - 1) < 0 \] ### Step 5: Find the critical points To find the critical points, we set each factor to zero: 1. \( 2x + 3 = 0 \) gives \( x = -\frac{3}{2} \) 2. \( 4x - 1 = 0 \) gives \( x = \frac{1}{4} \) ### Step 6: Test intervals We will now test the intervals determined by the critical points \( x = -\frac{3}{2} \) and \( x = \frac{1}{4} \): - Interval 1: \( (-\infty, -\frac{3}{2}) \) - Interval 2: \( (-\frac{3}{2}, \frac{1}{4}) \) - Interval 3: \( (\frac{1}{4}, \infty) \) Choose test points from each interval: 1. For \( x = -2 \) (Interval 1): \( (2(-2) + 3)(4(-2) - 1) = (-4 + 3)(-8 - 1) = (-1)(-9) > 0 \) 2. For \( x = 0 \) (Interval 2): \( (2(0) + 3)(4(0) - 1) = (3)(-1) < 0 \) 3. For \( x = 1 \) (Interval 3): \( (2(1) + 3)(4(1) - 1) = (2 + 3)(4 - 1) = (5)(3) > 0 \) ### Step 7: Conclusion The inequality \( (2x + 3)(4x - 1) < 0 \) holds true in the interval: \[ x \in \left(-\frac{3}{2}, \frac{1}{4}\right) \] ### Final Answer Thus, the solution to the inequality \( \sqrt{9x^2 + 6x + 1} < 2 - x \) is: \[ x \in \left(-\frac{3}{2}, \frac{1}{4}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

The value of sin^(-1) {( sin. pi/3) x/sqrt((x^(2) + k^(2) - kx))} - cos^(_1) {( cos. pi/6) x/sqrt((x^(2) + k^(2) - kx))}" , where" (k/2 lt x lt 2k, k gt 0) is

Solve (x^2-4)sqrt(x^2 -1) lt 0.

Using properties of proportion, solve for x : (i) (sqrt(x + 5) + sqrt(x - 16))/ (sqrt(x + 5) - sqrt(x - 16)) = (7)/(3) (ii) (sqrt(x + 1) + sqrt(x - 1))/ (sqrt(x + 1) - sqrt(x - 1)) = (4x -1)/(2) . (iii) (3x + sqrt(9x^(2) -5))/(3x - sqrt(9x^(2) -5)) = 5 .

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

The roots of the equation 6 sqrt(5) x^(2) - 9x - 3sqrt(5) = 0 is

The range of values of x which satisfy 2x^(2) + 9x + 4 lt 0 and x^(2) - 5x + 6 lt 0 is

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

Find the roots of the following quadratic equations i) 6sqrt5 x^(2) – 9x -3sqrt5 = 0 ii) x^(2) - x - 12 = 0 iii) 2x^(2) - 6x + 7 = 0 iv) 4x^(2) - 4x+17 = 3x^(2) -10x-17 v) x^(2) + 6x + 34 = 0 vi) 3x^(2) + 2x - 5 = 0

Solve for x if sqrt(x^(2)-x) lt (x-1)