Home
Class 12
MATHS
{x in R: (14x)/(x+1)- (9x-30)/(x-4) lt 0...

`{x in R: (14x)/(x+1)- (9x-30)/(x-4) lt 0} =`

A

(-1, 4)

B

`(1, 4) uu (5, 7)`

C

(1, 7)

D

`(-1, 1) uu (4, 6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{14x}{x+1} - \frac{9x-30}{x-4} < 0\), we will follow these steps: ### Step 1: Find a common denominator The common denominator for the fractions is \((x + 1)(x - 4)\). We will rewrite the inequality with this common denominator. \[ \frac{14x(x - 4) - (9x - 30)(x + 1)}{(x + 1)(x - 4)} < 0 \] ### Step 2: Expand the numerator Now, we will expand the numerator: 1. Expand \(14x(x - 4)\): \[ 14x^2 - 56x \] 2. Expand \((9x - 30)(x + 1)\): \[ 9x^2 + 9x - 30x - 30 = 9x^2 - 21x - 30 \] Now, substituting back into the inequality: \[ \frac{14x^2 - 56x - (9x^2 - 21x - 30)}{(x + 1)(x - 4)} < 0 \] ### Step 3: Combine like terms in the numerator Combine the terms in the numerator: \[ 14x^2 - 56x - 9x^2 + 21x + 30 = 5x^2 - 35x + 30 \] So we have: \[ \frac{5x^2 - 35x + 30}{(x + 1)(x - 4)} < 0 \] ### Step 4: Factor the numerator Now we will factor the quadratic \(5x^2 - 35x + 30\): 1. Factor out the common factor of 5: \[ 5(x^2 - 7x + 6) \] 2. Factor the quadratic: \[ 5(x - 6)(x - 1) \] So the inequality becomes: \[ \frac{5(x - 6)(x - 1)}{(x + 1)(x - 4)} < 0 \] ### Step 5: Determine the critical points The critical points are where the expression is equal to zero or undefined: 1. From the numerator: \(x - 6 = 0 \Rightarrow x = 6\) and \(x - 1 = 0 \Rightarrow x = 1\) 2. From the denominator: \(x + 1 = 0 \Rightarrow x = -1\) and \(x - 4 = 0 \Rightarrow x = 4\) The critical points are \(-1, 1, 4, 6\). ### Step 6: Test intervals We will test the intervals defined by these critical points: 1. \( (-\infty, -1) \) 2. \( (-1, 1) \) 3. \( (1, 4) \) 4. \( (4, 6) \) 5. \( (6, \infty) \) Choose test points from each interval: - For \(x = -2\) in \((- \infty, -1)\): \[ \frac{5(-2 - 6)(-2 - 1)}{(-2 + 1)(-2 - 4)} = \frac{5(-8)(-3)}{(-1)(-6)} > 0 \] - For \(x = 0\) in \((-1, 1)\): \[ \frac{5(0 - 6)(0 - 1)}{(0 + 1)(0 - 4)} = \frac{5(-6)(-1)}{(1)(-4)} < 0 \] - For \(x = 2\) in \((1, 4)\): \[ \frac{5(2 - 6)(2 - 1)}{(2 + 1)(2 - 4)} = \frac{5(-4)(1)}{(3)(-2)} > 0 \] - For \(x = 5\) in \((4, 6)\): \[ \frac{5(5 - 6)(5 - 1)}{(5 + 1)(5 - 4)} = \frac{5(-1)(4)}{(6)(1)} < 0 \] - For \(x = 7\) in \((6, \infty)\): \[ \frac{5(7 - 6)(7 - 1)}{(7 + 1)(7 - 4)} = \frac{5(1)(6)}{(8)(3)} > 0 \] ### Step 7: Conclusion The intervals where the expression is less than zero are: 1. \((-1, 1)\) 2. \((4, 6)\) Thus, the solution to the inequality is: \[ x \in (-1, 1) \cup (4, 6) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : (x+4)/(x-2)-(2)/(x+1) lt 0

Solve x(2^x-1)(3^x-9)^5(x-3)<0.

Find k, if possible, so that f (x)= [{:((ln (2- cos 2x))/(ln ^(2) (1+ sin 3x)),,, x lt 0),(k,,, x=0),((e ^(sin 2x )-1)/(ln (1+ tan 9x)),,, x gt 0):} is continious at x=0.

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

If f(x)=max{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x > 0 f(x) = { 1/(64), 0 lt= x lt = 1/4 x^2, 1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

Differentiate the following function with respect to x : t a n^(-1)((2^(x+1))/(1-4^x)) , 0 lt x lt oo

Solve the following equations and also check your result in each case: (i) ((3x+1))/(16)+((2x-3))/7=((x+3))/8+((3x-1))/(14) (ii) ((1-2x))/7-((2-3x))/8=3/2+x/4 (iii) (9x+7)/2-\ (x-(x-2)/7)=36 (iv) 0. 18\ (5x-4)=\ 0. 5 x+0. 8

For x in (0,1) Prove that x-(x^(3))/(3) lt tan^(-1) x lt x -(x^(3))/(6) hence or otherwise find lim_( x to0) [(tan^(-1)x)/(x)]

Which of the following statement is true for the function f(x)={{:(sqrt(x),","x ge 1),(x^(3) ,","0 le x lt 1),((x^(3))/(3)-4x,"," x lt 0):}

Find the domain of the function defined as f(x) = (x^(2) + 14x + 9)/(x^(2) -4x + 3) , where x in R .