Home
Class 12
MATHS
In a triangle PQR angle R=(pi)/(4),...

In a triangle ` PQR angle R=(pi)/(4),` if `tan (p/3) and tan ((Q)/(3))` are the roots of the equation `ax ^2 + bx +c=0` then

A

a+b=c

B

b+c=a

C

a+c=b

D

b=c

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information and apply the properties of triangles and quadratic equations. ### Step-by-Step Solution: 1. **Identify the Given Information:** - We have a triangle \( PQR \) with \( \angle R = \frac{\pi}{4} \). - The roots of the quadratic equation \( ax^2 + bx + c = 0 \) are \( \tan\left(\frac{P}{3}\right) \) and \( \tan\left(\frac{Q}{3}\right) \). 2. **Use the Sum of Angles in a Triangle:** - In triangle \( PQR \), the sum of the angles is given by: \[ \angle P + \angle Q + \angle R = \pi \] - Substituting \( \angle R = \frac{\pi}{4} \): \[ \angle P + \angle Q + \frac{\pi}{4} = \pi \] - Rearranging gives: \[ \angle P + \angle Q = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \] 3. **Divide by 3:** - Dividing the equation by 3: \[ \frac{\angle P}{3} + \frac{\angle Q}{3} = \frac{3\pi}{4 \cdot 3} = \frac{\pi}{4} \] 4. **Apply the Tangent Function:** - Taking the tangent of both sides: \[ \tan\left(\frac{\angle P}{3} + \frac{\angle Q}{3}\right) = \tan\left(\frac{\pi}{4}\right) \] - Since \( \tan\left(\frac{\pi}{4}\right) = 1 \), we have: \[ \tan\left(\frac{\angle P}{3}\right) + \tan\left(\frac{\angle Q}{3}\right) = 1 \] 5. **Use the Sum of Tangents Formula:** - Using the formula for the sum of tangents: \[ \tan\left(\frac{P}{3} + \frac{Q}{3}\right) = \frac{\tan\left(\frac{P}{3}\right) + \tan\left(\frac{Q}{3}\right)}{1 - \tan\left(\frac{P}{3}\right) \tan\left(\frac{Q}{3}\right)} \] - Setting this equal to 1 gives: \[ \frac{\tan\left(\frac{P}{3}\right) + \tan\left(\frac{Q}{3}\right)}{1 - \tan\left(\frac{P}{3}\right) \tan\left(\frac{Q}{3}\right)} = 1 \] 6. **Cross-Multiply and Rearrange:** - Cross-multiplying results in: \[ \tan\left(\frac{P}{3}\right) + \tan\left(\frac{Q}{3}\right) = 1 - \tan\left(\frac{P}{3}\right) \tan\left(\frac{Q}{3}\right) \] - We know from Vieta's formulas that: \[ \tan\left(\frac{P}{3}\right) + \tan\left(\frac{Q}{3}\right) = -\frac{b}{a} \] \[ \tan\left(\frac{P}{3}\right) \tan\left(\frac{Q}{3}\right) = \frac{c}{a} \] 7. **Substituting Vieta's Formulas:** - Substituting these into our equation gives: \[ -\frac{b}{a} = 1 - \frac{c}{a} \] - Multiplying through by \( a \) (assuming \( a \neq 0 \)): \[ -b = a - c \] - Rearranging gives: \[ a + b = c \] 8. **Conclusion:** - The relationship we derived is \( A + B = C \). ### Final Answer: Thus, the correct condition is \( A + B = C \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1,2,3 are the roots of the equation x^(3) + ax^(2) + bx + c=0 , then

2x^(2) + 3x - alpha = 0 " has roots "-2 and beta " while the equation "x^(2) - 3mx + 2m^(2) = 0 " has both roots positive, where " alpha gt 0 and beta gt 0. Delta PQR, angleR=pi/2. " If than "(P/2) and tan (Q/2) " are the roots of the equation " ax^(2) + bx + c = 0 , then which one of the following is correct ?

In any triangle PQR, angleR = pi/2 . If tan 'P/2 and tan 'Q/2 are the roots of the equation ax^(2) + bx + c=0 (a ne 0) , then show that, a+b=c.

In Delta PQR , /_R=pi/4 , tan(P/3) , tan(Q/3) are the roots of the equation ax^2+bx+c=0 , then

If tan alpha tan beta are the roots of the equation x^2 + px +q =0(p!=0) then

If the tan theta and sec theta are roots of the equation ax^(2)+bx+c=0, then

If the roots of the cubic equation ax^3+bx^2+cx+d=0 are in G.P then

If 1,2,3 and 4 are the roots of the equation x^4 + ax^3 + bx^2 +cx +d=0 then a+ 2b +c=

In a triangle PQR, ∠R=π/2 .If tan(P/2) & tan(Q/2) , are the roots of the equation ax^2+bx+c=(a≠0) then

Suppose 1,2,3 are the roots of the equation x^4 + ax^2 + bx + c = 0 . Find the value of c.