Home
Class 12
MATHS
If (3x+2)/(2x+3)=(4x+3)/(3x+4), then x =...

If `(3x+2)/(2x+3)=(4x+3)/(3x+4)`, then x =

A

`+-2`

B

`+-4`

C

`+-1`

D

`+-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{3x + 2}{2x + 3} = \frac{4x + 3}{3x + 4}\), we will follow these steps: ### Step 1: Cross Multiply We start by cross-multiplying the fractions to eliminate the denominators. \[ (3x + 2)(3x + 4) = (4x + 3)(2x + 3) \] ### Step 2: Expand Both Sides Next, we will expand both sides of the equation. Left side: \[ (3x + 2)(3x + 4) = 3x \cdot 3x + 3x \cdot 4 + 2 \cdot 3x + 2 \cdot 4 = 9x^2 + 12x + 6x + 8 = 9x^2 + 18x + 8 \] Right side: \[ (4x + 3)(2x + 3) = 4x \cdot 2x + 4x \cdot 3 + 3 \cdot 2x + 3 \cdot 3 = 8x^2 + 12x + 6x + 9 = 8x^2 + 18x + 9 \] ### Step 3: Set the Equation Now we set the two expanded forms equal to each other: \[ 9x^2 + 18x + 8 = 8x^2 + 18x + 9 \] ### Step 4: Move All Terms to One Side To simplify, we will move all terms to one side of the equation: \[ 9x^2 + 18x + 8 - 8x^2 - 18x - 9 = 0 \] This simplifies to: \[ x^2 - 1 = 0 \] ### Step 5: Factor the Quadratic Next, we can factor the quadratic equation: \[ (x - 1)(x + 1) = 0 \] ### Step 6: Solve for x Setting each factor equal to zero gives us the solutions: \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] \[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \] ### Final Answer Thus, the values of \(x\) are: \[ x = \pm 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(2x+3)(3x+4)

If |(3x,4),(5,x)|=|(4,-3),(5,-2)| , then x =

Simplify: (3x+2)(2x+3)-(4x-3)(2x-1)

Find the median of the following data if the value of x = 4 , x -4, 2x - 6, 3x-10 ,(x)/(2) - 1 , ( 3x)/( 2 x - 4) , x + 3, (x)/( 2), 2x + 7, 3x - 2, 2x -5

If f(x)=2x^(6)+3x^(4)+4x^(2) , then f'(x) is

Solve for : x :(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x!=2,4

Solve for x : (x-1)/(x-2)+(x-3)/(x-4)=3 1/3;\ \ x!=2,\ 4

If f(x)=3x^(4)+4x^(3)-12x^(2)+12 , then f(x) is

1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(3))/(3!)+..infty is equal to

If |3x | != 2 , what is the value of (9x^2 - 4)/(3x + 2) - (9x^2 - 4)/(3x - 2) ?