Home
Class 12
MATHS
The roots of the equation (b-c) x^2...

The roots of the equation `(b-c) x^2 +(c-a)x+(a-b)=0`are

A

1, -1

B

1, `((a-c))/((b-c))`

C

1, `((a-b))/((b-c))`

D

1, `((b-a))/((b-c))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the roots of the quadratic equation \((b-c)x^2 + (c-a)x + (a-b) = 0\), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ### Step 1: Identify coefficients In our equation, we can identify the coefficients as follows: - \(a = b - c\) - \(b = c - a\) - \(c = a - b\) ### Step 2: Substitute coefficients into the quadratic formula Substituting the coefficients into the quadratic formula, we have: \[ x = \frac{-(c-a) \pm \sqrt{(c-a)^2 - 4(b-c)(a-b)}}{2(b-c)} \] ### Step 3: Simplify the expression Now, we simplify the expression under the square root: \[ (c-a)^2 = c^2 - 2ac + a^2 \] Next, we calculate \(4(b-c)(a-b)\): \[ 4(b-c)(a-b) = 4((b-c)(a-b)) = 4[(b)(a) - (b)(b) - (c)(a) + (c)(b)] \] ### Step 4: Combine the terms Now, combine the terms in the square root: \[ x = \frac{-(c-a) \pm \sqrt{c^2 - 2ac + a^2 - 4(ab - ac - b^2 + bc)}}{2(b-c)} \] ### Step 5: Further simplification Continuing to simplify the expression under the square root, we combine like terms: \[ x = \frac{-(c-a) \pm \sqrt{(a^2 + c^2 - 4ab + 4bc - 2ac)}}{2(b-c)} \] ### Step 6: Finalize the roots Now we can express the roots as: \[ x_1 = \frac{c - a + \sqrt{(a - 2b + c)^2}}{2(b-c)} \] \[ x_2 = \frac{c - a - \sqrt{(a - 2b + c)^2}}{2(b-c)} \] ### Step 7: Simplify the roots This leads us to: \[ x_1 = \frac{2a - 2b}{2(b-c)} = \frac{a - b}{b - c} \] \[ x_2 = \frac{2b - 2c}{2(b-c)} = \frac{b - c}{b - c} = 1 \] ### Conclusion Thus, the roots of the equation \((b-c)x^2 + (c-a)x + (a-b) = 0\) are: \[ x_1 = \frac{a - b}{b - c}, \quad x_2 = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion (A): The roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are 1, (c(a-b))/(a(b-c)) Reason (R): If a+b+c=0 then the roots of ax^(2)+bx+c=0 are 1, (c)/(a)

The roots of the equation a(b-2c)x^(2)+b(c-2a)x+c(a-2b)=0 are, when ab+bc+ca=0

If the roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal, show that 2//b=1//a+1// c dot

If b is the harmonic mean of a and c and alpha, beta are the roots of the equation a(b-c)x^(2) + b(c-a) x+ c(a-b)=0 , then

If the roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal, show that 2//b=1//a+1//cdot

If a, b, c, d are four non - zero real numbers such that (d+a-b)^(2)+(d+b-c)^(2)=0 and roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are real equal, then

Column I, Column II If a ,b ,c ,a n dd are four zero real numbers such that (d+a-b)^2+(d+b-c)^2=0 and he root of the equation a(b-c)x^2+b(c-a)x=c(a-b)=0 are real and equal, then, p. a+b+c=0 If the roots the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are real and equal, then, q. a ,b ,ca r einAdotPdot If the equation a x^2+b x+c=0a n dx^3-3x^2+3x-0 have a common real root, then, r. a ,b ,ca r einGdotPdot Let a ,b ,c be positive real number such that the expression b x^2+(sqrt((a+b)^2+b^2))x+(a+c) is non-negative AAx in R , then, s. a ,b ,ca r einHdotPdot

If a,b,c are in A.P. then the roots of the equation (a+b-c)x^2 + (b-a) x-a=0 are :

6.The roots of the equation (a-b+c)x^(2)+4(a-b)x+(a-b-c)=0 are

If a+b+c=0 and a,b,c are rational. Prove that the roots of the equation (b+c-a)x^(2)+(c+a-b)x+(a+b-c)=0 are rational.