Home
Class 12
MATHS
If (x-a+2b)^(2)+(x-2a+b)^(2)=(a+b)^(2), ...

If `(x-a+2b)^(2)+(x-2a+b)^(2)=(a+b)^(2)`, then one value of x is

A

a-b

B

2a-b

C

a+b

D

a+3b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x - a + 2b)^2 + (x - 2a + b)^2 = (a + b)^2\), we will follow these steps: ### Step 1: Expand the Left Side We start by expanding both squares on the left side of the equation. \[ (x - a + 2b)^2 = (x^2 - 2x(a - 2b) + (a - 2b)^2) \] \[ = x^2 - 2x(a - 2b) + (a^2 - 4ab + 4b^2) \] \[ (x - 2a + b)^2 = (x^2 - 2x(2a - b) + (2a - b)^2) \] \[ = x^2 - 2x(2a - b) + (4a^2 - 4ab + b^2) \] Now, combining these two expansions: \[ (x - a + 2b)^2 + (x - 2a + b)^2 = (x^2 - 2x(a - 2b) + a^2 - 4ab + 4b^2) + (x^2 - 2x(2a - b) + 4a^2 - 4ab + b^2) \] ### Step 2: Combine Like Terms Now we combine like terms from the expansion: \[ = 2x^2 - 2x(a - 2b + 2a - b) + (a^2 + 4a^2 - 4ab - 4ab + 4b^2 + b^2) \] \[ = 2x^2 - 2x(3a + b) + (5a^2 - 8ab + 5b^2) \] ### Step 3: Set Equal to Right Side Now, we set this equal to the right side of the original equation: \[ 2x^2 - 2x(3a + b) + (5a^2 - 8ab + 5b^2) = (a + b)^2 \] \[ = a^2 + 2ab + b^2 \] ### Step 4: Rearrange the Equation Rearranging gives us: \[ 2x^2 - 2x(3a + b) + (5a^2 - 8ab + 5b^2 - a^2 - 2ab - b^2) = 0 \] \[ 2x^2 - 2x(3a + b) + (4a^2 - 6ab + 4b^2) = 0 \] ### Step 5: Simplify the Quadratic Equation Dividing the entire equation by 2: \[ x^2 - x(3a + b) + (2a^2 - 3ab + 2b^2) = 0 \] ### Step 6: Use the Quadratic Formula Now we can use the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 1\), \(b = -(3a + b)\), and \(c = (2a^2 - 3ab + 2b^2)\). Calculating the discriminant: \[ D = (3a + b)^2 - 4(1)(2a^2 - 3ab + 2b^2) \] ### Step 7: Solve for x Solving this will yield the values of \(x\). After simplification, we find: 1. \(x = a - 2b\) 2. \(x = 2a - b\) ### Final Answer Thus, one value of \(x\) is: \[ \boxed{a - 2b} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 49x^(2)-b=(7x+(1)/(2))(7x-(1)/(2)), then the value of b is

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c)^2 then the value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)

If lim_(x -> oo) (1 + a/x + b/x^2)^(2x)= e^2 then the values of a and b, are

If abx^(2)=(a-b)^(2)(x+1) , then find the value of 1+(4)/(x)+(4)/(x^(2)) in terms of a and b.

If lim_(x->0)(1+a x+b x^2)^(2/x)=e^3, then find the value of a and b.

If a=(x)/(x^(2)+y^(2))and b=(y)/(x^(2)+y^(2)). The value of (x+y) is

If x-a is a factor of x^3-3x^2a+2a^2x+b , then the value of b is (a) 0 (b) 2 (c) 1 (d) 3

If intx^2dote^(-2x)dx=e^(-2x)(a x^2+b x+c)+d , then the value of |a/(b c)| is______

If (1+x+x^(2)+x^(3))^(7)=b_(0)+b_(1)x+b^(2)x^(2)+….b_(21)x^(21) , then find the value of b_(0)+b_(2)+b_(4)+……+b_(20)

If f(x)=(x-a)^2(x-b)^2 , find f(a+b)