Home
Class 12
MATHS
If alpha, beta are the rootsof 6x^(2)-4s...

If `alpha, beta` are the rootsof `6x^(2)-4sqrt2 x-3=0`, then `alpha^(2)beta+alpha beta^(2)` is

A

`(2)/(3)`

B

`(-2)/(3)`

C

`(sqrt2)/(3)`

D

`(-sqrt2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha^2 \beta + \alpha \beta^2 \) given that \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( 6x^2 - 4\sqrt{2}x - 3 = 0 \). ### Step 1: Identify coefficients The given quadratic equation is in the standard form \( ax^2 + bx + c = 0 \), where: - \( a = 6 \) - \( b = -4\sqrt{2} \) - \( c = -3 \) ### Step 2: Calculate \( \alpha + \beta \) and \( \alpha \beta \) Using Vieta's formulas: - The sum of the roots \( \alpha + \beta = -\frac{b}{a} \) - The product of the roots \( \alpha \beta = \frac{c}{a} \) Calculating \( \alpha + \beta \): \[ \alpha + \beta = -\frac{-4\sqrt{2}}{6} = \frac{4\sqrt{2}}{6} = \frac{2\sqrt{2}}{3} \] Calculating \( \alpha \beta \): \[ \alpha \beta = \frac{-3}{6} = -\frac{1}{2} \] ### Step 3: Find \( \alpha^2 \beta + \alpha \beta^2 \) We can factor \( \alpha^2 \beta + \alpha \beta^2 \) as follows: \[ \alpha^2 \beta + \alpha \beta^2 = \alpha \beta (\alpha + \beta) \] ### Step 4: Substitute the values Now substituting the values we found: \[ \alpha^2 \beta + \alpha \beta^2 = \alpha \beta (\alpha + \beta) = \left(-\frac{1}{2}\right) \left(\frac{2\sqrt{2}}{3}\right) \] ### Step 5: Calculate the result Now, performing the multiplication: \[ \alpha^2 \beta + \alpha \beta^2 = -\frac{1}{2} \cdot \frac{2\sqrt{2}}{3} = -\frac{2\sqrt{2}}{6} = -\frac{\sqrt{2}}{3} \] ### Final Answer Thus, the value of \( \alpha^2 \beta + \alpha \beta^2 \) is: \[ -\frac{\sqrt{2}}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^(2) - x + 3 = 0 , then alpha^(4) +beta^(4) =

If alpha, beta are the roots of x^2 - sqrt(3)x + 1 = 0 then alpha^(21) + beta^(21) is:

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If alpha, beta are the roots of x^(2)-px+q=0 then (alpha+beta)x-(alpha^(2)+beta^(2))(x^(2))/(2)+(alpha^(3)+beta^(3))(x^(3))/(3)-….oo=

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha, beta, gamma are the roiots of x^(3) - 10x^(2) +6x - 8 = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha and beta are the root of the equation x^(2) - 4x + 5 = 0 , then alpha^(2) + beta^(2) = ________

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta