Home
Class 12
MATHS
If alpha , beta are the roots of ...

If ` alpha , beta ` are the roots of ` ax ^2 + bx +c=0` then `alpha ^5 beta ^8 + alpha^8 beta ^5=`

A

`(c^(5)(3abc-b^(3))/(a^(8)))`

B

`(c^(3)(3abc-b^(3))/(a^(5)))`

C

`(a^(2)(3abc-b^(3))/(c^(5)))`

D

`(a^(3)(3abc-b^(3))/(c^(5)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha^5 \beta^8 + \alpha^8 \beta^5 \) given that \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( ax^2 + bx + c = 0 \). ### Step-by-Step Solution 1. **Identify the roots**: From Vieta's formulas, we know: \[ \alpha + \beta = -\frac{b}{a} \quad \text{and} \quad \alpha \beta = \frac{c}{a} \] 2. **Rewrite the expression**: We can factor the expression \( \alpha^5 \beta^8 + \alpha^8 \beta^5 \): \[ \alpha^5 \beta^8 + \alpha^8 \beta^5 = \alpha^5 \beta^5 (\beta^3 + \alpha^3) \] 3. **Find \( \beta^3 + \alpha^3 \)**: We can use the identity for the sum of cubes: \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) \] We can express \( \alpha^2 + \beta^2 \) as: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Thus, \[ \alpha^2 - \alpha\beta + \beta^2 = \alpha^2 + \beta^2 - \alpha\beta = \left( (\alpha + \beta)^2 - 2\alpha\beta \right) - \alpha\beta \] Substituting the values: \[ = \left( -\frac{b}{a} \right)^2 - 3 \cdot \frac{c}{a} = \frac{b^2}{a^2} - \frac{3c}{a} \] 4. **Substituting back**: Now substituting back into the expression for \( \alpha^3 + \beta^3 \): \[ \alpha^3 + \beta^3 = \left( -\frac{b}{a} \right) \left( \frac{b^2}{a^2} - \frac{3c}{a} \right) = -\frac{b}{a} \cdot \frac{b^2 - 3ac}{a^2} = -\frac{b(b^2 - 3ac)}{a^3} \] 5. **Combine everything**: Now we can substitute back into our expression: \[ \alpha^5 \beta^5 (\beta^3 + \alpha^3) = \left( \frac{c}{a} \right)^5 \left( -\frac{b(b^2 - 3ac)}{a^3} \right) \] This simplifies to: \[ = -\frac{c^5 b (b^2 - 3ac)}{a^8} \] ### Final Answer Thus, the final expression for \( \alpha^5 \beta^8 + \alpha^8 \beta^5 \) is: \[ -\frac{c^5 b (b^2 - 3ac)}{a^8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

If alpha , beta are the roots of ax^(2) + bx +c=0 , then (alpha^(3) + beta^(3))/(alpha^(-3) + beta^(-3)) is equal to :

If alpha , beta are the roots of ax^2+bx +c=0 then (1+ alpha + alpha ^2)(1+ beta + beta ^2) is

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha, beta are the roots of ax^2 + bx + c = 0, the equation whose roots are 2 + alpha, 2 + beta is

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha, beta are the roots of a x^2 + bx + c = 0 and k in R then the condition so that alpha < k < beta is :

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to