Home
Class 12
MATHS
If the roots ax^(2)+bx+c=0 are (3)/(2),(...

If the roots `ax^(2)+bx+c=0` are `(3)/(2),(4)/(3)` then `(a+b+c)^(2)` =

A

`(a^(2))/(36)`

B

`(a^(2))/(6)`

C

`(a^(2))/(25)`

D

`(a^(2))/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a + b + c)^2\) given that the roots of the quadratic equation \(ax^2 + bx + c = 0\) are \(\frac{3}{2}\) and \(\frac{4}{3}\). ### Step-by-Step Solution: 1. **Identify the roots**: The roots of the quadratic equation are given as \(\alpha = \frac{3}{2}\) and \(\beta = \frac{4}{3}\). 2. **Use the sum of the roots**: According to Vieta's formulas, the sum of the roots \(\alpha + \beta\) is given by: \[ \alpha + \beta = -\frac{b}{a} \] Substituting the values of the roots: \[ \frac{3}{2} + \frac{4}{3} = -\frac{b}{a} \] To add these fractions, we find a common denominator: \[ \frac{3}{2} = \frac{9}{6}, \quad \frac{4}{3} = \frac{8}{6} \] Therefore, \[ \frac{9}{6} + \frac{8}{6} = \frac{17}{6} \] Thus, we have: \[ -\frac{b}{a} = \frac{17}{6} \implies b = -\frac{17}{6}a \] 3. **Use the product of the roots**: The product of the roots \(\alpha \cdot \beta\) is given by: \[ \alpha \cdot \beta = \frac{c}{a} \] Substituting the values of the roots: \[ \frac{3}{2} \cdot \frac{4}{3} = \frac{c}{a} \] Simplifying the left side: \[ \frac{3 \cdot 4}{2 \cdot 3} = \frac{4}{2} = 2 \] Thus, we have: \[ \frac{c}{a} = 2 \implies c = 2a \] 4. **Calculate \(a + b + c\)**: Now we can find \(a + b + c\): \[ a + b + c = a + \left(-\frac{17}{6}a\right) + 2a \] Combining the terms: \[ a - \frac{17}{6}a + 2a = \left(1 + 2 - \frac{17}{6}\right)a = \left(3 - \frac{17}{6}\right)a \] Converting \(3\) to sixths: \[ 3 = \frac{18}{6} \implies \left(\frac{18}{6} - \frac{17}{6}\right)a = \frac{1}{6}a \] 5. **Calculate \((a + b + c)^2\)**: \[ (a + b + c)^2 = \left(\frac{1}{6}a\right)^2 = \frac{1}{36}a^2 \] ### Final Result: Thus, we find that: \[ (a + b + c)^2 = \frac{a^2}{36} \] ### Conclusion: The answer is \(\frac{a^2}{36}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of ax^(2) + bx + c = 0 are 2, (3)/(2) then (a+b+c)^(2)

If alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

Which of the following statements are correct E_(1) ) If a + b + c = 0 then 1 is a root of ax^(2) + bx + c = 0 . E_(2) ) If sin alpha, cos alpha are the roots of the equation ax^(2) + bx + c = 0 then b^(2)-a^(2) =2ac

If secalpha, tanalpha are roots of ax^2 + bx + c = 0 , then

If the equations ax^(2) +2bx +c = 0 and Ax^(2) +2Bx+C=0 have a common root and a,b,c are in G.P prove that a/A , b/B, c/C are in H.P

If the roots of the equation ax^(2)+bx+c=0 be in the ratio 3:4, show that 12b^(2)=49ac .

If the equation ax^(2) + bx + c = 0 and 2x^(2) + 3x + 4 = 0 have a common root, then a : b : c

If 3+4i is a root of the equation ax^(2)+bx+c= 0 where a, b, c in R then 31a+b+c=

If the roots of the equation ax^2 + bx + c = 0, a != 0 (a, b, c are real numbers), are imaginary and a + c < b, then

alpha,beta are the roots of ax^(2)+2bx+c=0 and alpha+delta,beta+delta are the roots of A x^(2)+2Bx+C=0 , then what is (b^(2)-ac)//(B^(2)-AC) equal to ?