Home
Class 12
MATHS
If alpha, beta are the roots of x^(2)+x+...

If `alpha, beta` are the roots of `x^(2)+x+1=0`, then `alpha^(-2)+beta^(-2)` is

A

`sqrt(-1)`

B

`-i sqrt3`

C

-1

D

`-i sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha^{-2} + \beta^{-2} \) given that \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 + x + 1 = 0 \). ### Step-by-Step Solution: 1. **Identify the roots of the quadratic equation**: The given equation is \( x^2 + x + 1 = 0 \). We can use the quadratic formula to find the roots: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = 1 \), and \( c = 1 \). Plugging in these values: \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} \] This simplifies to: \[ x = \frac{-1 \pm i\sqrt{3}}{2} \] Therefore, the roots are: \[ \alpha = \frac{-1 + i\sqrt{3}}{2}, \quad \beta = \frac{-1 - i\sqrt{3}}{2} \] 2. **Calculate \( \alpha^{-2} + \beta^{-2} \)**: We can use the identity \( x^{-2} = \frac{1}{x^2} \) to rewrite \( \alpha^{-2} + \beta^{-2} \): \[ \alpha^{-2} + \beta^{-2} = \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\beta^2 + \alpha^2}{\alpha^2 \beta^2} \] 3. **Find \( \alpha^2 + \beta^2 \)**: We can use the identity \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \). From Vieta's formulas, we know: \[ \alpha + \beta = -1, \quad \alpha \beta = 1 \] Therefore: \[ \alpha^2 + \beta^2 = (-1)^2 - 2 \cdot 1 = 1 - 2 = -1 \] 4. **Find \( \alpha^2 \beta^2 \)**: We can calculate \( \alpha^2 \beta^2 \) as: \[ \alpha^2 \beta^2 = (\alpha \beta)^2 = 1^2 = 1 \] 5. **Combine results**: Now substitute back into the expression for \( \alpha^{-2} + \beta^{-2} \): \[ \alpha^{-2} + \beta^{-2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{-1}{1} = -1 \] ### Final Answer: Thus, the value of \( \alpha^{-2} + \beta^{-2} \) is \( -1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^2 - sqrt(3)x + 1 = 0 then alpha^(21) + beta^(21) is:

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If w , w^(2) are the roots of x^(2)+x+1=0 and alpha, beta are the roots of x^(2)+px+q=0 then (w alpha+w^(2)beta)(w^(2)alpha+w beta) =

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha , beta are the roots of x^2-p(x+1)+c=0 then (1+alpha )( 1+ beta )=

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha, beta are the roots of x^(2)-px+q=0 then (alpha+beta)x-(alpha^(2)+beta^(2))(x^(2))/(2)+(alpha^(3)+beta^(3))(x^(3))/(3)-….oo=

If alpha, beta are the roots of 3x^(2) + 5x - 7 = 0 then (1)/(3alpha+5)^(2)+ (1)/(3beta+5)^(2)=

If alpha and beta are roots of the equation x^(2)+x+1=0 , then alpha^(2)+beta^(2) is equal to

Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3