Home
Class 12
MATHS
The maximum value of the expression (x^(...

The maximum value of the expression `(x^(2)+x+1)/(2x^(2)-x+1)`, for `x in R`, is

A

`(7+2sqrt7)/(7)`

B

`(7-2sqrt7)/(7)`

C

`(7)/(3)`

D

`(14+2sqrt7)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( y = \frac{x^2 + x + 1}{2x^2 - x + 1} \), we will follow these steps: ### Step 1: Cross-multiply We start by cross-multiplying to eliminate the fraction: \[ y(2x^2 - x + 1) = x^2 + x + 1 \] This simplifies to: \[ 2yx^2 - yx + y = x^2 + x + 1 \] ### Step 2: Rearranging the equation Rearranging gives us: \[ (2y - 1)x^2 - (y + 1)x + (y - 1) = 0 \] ### Step 3: Identify coefficients Now, we can identify the coefficients: - \( a = 2y - 1 \) - \( b = -(y + 1) \) - \( c = y - 1 \) ### Step 4: Condition for real roots For the quadratic equation to have real roots, the discriminant must be non-negative: \[ b^2 - 4ac \geq 0 \] Substituting the coefficients: \[ (-(y + 1))^2 - 4(2y - 1)(y - 1) \geq 0 \] ### Step 5: Expand the discriminant Expanding this gives: \[ (y + 1)^2 - 4(2y^2 - 3y + 1) \geq 0 \] This simplifies to: \[ y^2 + 2y + 1 - (8y^2 - 12y + 4) \geq 0 \] \[ y^2 + 2y + 1 - 8y^2 + 12y - 4 \geq 0 \] \[ -7y^2 + 14y - 3 \geq 0 \] ### Step 6: Rearranging the inequality Rearranging gives: \[ 7y^2 - 14y + 3 \leq 0 \] ### Step 7: Finding roots using the quadratic formula Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 7 \), \( b = -14 \), and \( c = 3 \): \[ y = \frac{14 \pm \sqrt{(-14)^2 - 4 \cdot 7 \cdot 3}}{2 \cdot 7} \] Calculating the discriminant: \[ y = \frac{14 \pm \sqrt{196 - 84}}{14} \] \[ y = \frac{14 \pm \sqrt{112}}{14} \] \[ y = \frac{14 \pm 4\sqrt{7}}{14} \] \[ y = 1 \pm \frac{2\sqrt{7}}{7} \] ### Step 8: Maximum value The maximum value occurs at: \[ y = 1 + \frac{2\sqrt{7}}{7} \] ### Final Result Thus, the maximum value of the expression \( \frac{x^2 + x + 1}{2x^2 - x + 1} \) is: \[ \boxed{1 + \frac{2\sqrt{7}}{7}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of the expression 2 ^(x) + 2 ^(2x +1) + (5)/(2 ^(x)) ,x in R is :

The maximum value of the function f(x) = (1)/( 4x^(2) + 2 x + 1) is

If G and L are the greatest and least values of the expression (x^(2)-x+1)/(x^(2)+x+1), x epsilon R respectively. then find the least value of G^(5)+L^(5) .

If G and L are the greatest and least values of the expression (x^(2)-x+1)/(x^(2)+x+1), x epsilon R respectively then G and L are the roots of the equation

The value of the expression (5)/(3)x^(3)+1 when x=-2 is

If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2x+1) is

Determine the sign of the expression i) x^(2)+x+1 ii) -x^(2)+x-1 for x in R .

The number of integral values which can be taken by the expression, f (x) = (x ^(3)-1)/((x-1) (x ^(2) -x+1)) for x in R, is: 1 2 3 infinite

For all real value of x , the maximum value of the expression x/(x^2-5x+9) is 1 (b) 45 (c) 90 (d) None of these

The maximum value of ((1)/(x))^(2x^(2)) is