Home
Class 12
MATHS
sum(n=0)^(oo) ((logex)^n)/(n!)...

`sum_(n=0)^(oo) ((log_ex)^n)/(n!)`

A

`log_(e) x `

B

x

C

`1/(log_(e)x)`

D

`1/x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{n=0}^{\infty} \frac{(\log_e x)^n}{n!} \), we can recognize that this series resembles the Taylor series expansion for the exponential function \( e^x \). ### Step-by-Step Solution: 1. **Identify the Series**: The given series is \( \sum_{n=0}^{\infty} \frac{(\log_e x)^n}{n!} \). 2. **Recall the Exponential Series**: The Taylor series expansion for \( e^x \) is given by: \[ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \] By comparing, we can see that if we let \( x = \log_e x \), then our series becomes: \[ e^{\log_e x} = \sum_{n=0}^{\infty} \frac{(\log_e x)^n}{n!} \] 3. **Apply the Exponential Function**: From the properties of logarithms and exponentials, we know that: \[ e^{\log_e x} = x \] 4. **Conclusion**: Therefore, we conclude that: \[ \sum_{n=0}^{\infty} \frac{(\log_e x)^n}{n!} = x \] ### Final Answer: Thus, the final result is: \[ \sum_{n=0}^{\infty} \frac{(\log_e x)^n}{n!} = x \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) ((log_ex)^(2n-1))/((2n-1)!)=

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

p=sum_(n=0)^(oo) (x^(3n))/((3n)!) , q=sum_(n=1)^(oo) (x^(3n-2))/((3n-2)!), r = sum_(n=1)^(oo) (x^(3n-1))/((3n-1)!) then p + q + r =

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

Let x= sum_(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum_(n=0)^oo (costheta)^(2n) qhere theta in (0,pi/4) , then

If agt0 , then sum_(n=1)^(oo) ((a)/(a+1))^(n) equals

sum_(n=1) ^(oo) (1)/((2n-1)!)=

If f(x)=sum_(n=0)^oo x^n/(n!)(loga)^n , then at x = 0, f(x) (a) has no limit (b) is discontinuous (c) is continuous but not differentiable (d) is differentiable

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=