Home
Class 12
MATHS
1/(2!)-1/(3!)+1/(4!) .....oo =...

`1/(2!)-1/(3!)+1/(4!) .....oo` =

A

`e^(1/2)`

B

`e^(-2)`

C

`e^(-1)`

D

`e^((-1)/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \ldots \) we can relate it to the exponential series. ### Step 1: Recognize the Exponential Series The exponential function \( e^x \) can be expressed as a power series: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] If we set \( x = -1 \), we have: \[ e^{-1} = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \ldots \] ### Step 2: Rearranging the Series From the series for \( e^{-1} \), we can rearrange it to isolate the terms we are interested in: \[ e^{-1} = 1 - \left( \frac{1}{1!} - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \ldots \right) \] This means: \[ e^{-1} = 1 - S \] ### Step 3: Solve for \( S \) We can express \( S \) in terms of \( e^{-1} \): \[ S = 1 - e^{-1} \] ### Step 4: Substitute \( e^{-1} \) Since \( e^{-1} = \frac{1}{e} \), we can substitute this into our equation: \[ S = 1 - \frac{1}{e} \] ### Step 5: Final Result Thus, the value of the series is: \[ S = 1 - \frac{1}{e} \] ### Summary The series \( \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \ldots \) converges to \( 1 - \frac{1}{e} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

1+ 1/(2!)+2/(3!)+4/(4!)+ .... oo =

1/2+1/4 +1/(8(2)!)+1/(16(3)!)+1/(32(4)!)+ .....oo =

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

If (1+1/(1!)+(1)/(2!)+......oo) (1-(1)/(1!) +1/(2!) -1/(3!) + ......oo)=

(1/(2!)+1/(4!)+1/(6!)+ ....oo)/(1+1/(3!)+1/(5!)+....oo)

(1+3/(1!) +9/(2!) +(27)/(3!) + .....oo) (1+9/(1!) +(81)/(2!)+(729)/(3!)+ .....oo) =

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

1/(3!) +2/(5!) + (3)/(7!) + .....oo =

1+3/(1!) +5/(2!) + (7)/(3!) + ......oo=

1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo