Home
Class 12
MATHS
16/(2!)+(64)/(3!) + (256)/(4!) + ..... o...

`16/(2!)+(64)/(3!) + (256)/(4!) + ..... oo` =

A

`e^(4) -1 `

B

`e^(4) -2 `

C

`e^(4) -4 `

D

`e^(4) -5 `

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x =3 + (4)/(2!) + (8)/(3!) + (16)/(4!) + .....oo then 1/x =

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

4/(1!) +16/(3!)+(64)/(5!) + ......=

1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo

1/2+1/4 +1/(8(2)!)+1/(16(3)!)+1/(32(4)!)+ .....oo =

1/(2!)-1/(3!)+1/(4!) .....oo =

1+ 1/(2!)+2/(3!)+4/(4!)+ .... oo =

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

(1+x^2/(2!) +x^4 /(4!) + .....oo)^(2) - (x+x^3/(3!) +x^(5)/(5!) + ....oo)^(2) =

The value of (0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is