Home
Class 12
MATHS
sum(n=1)^(oo) (""^(n)C0+""^nC1+.....+ ""...

`sum_(n=1)^(oo) (""^(n)C_0+""^nC_1+.....+ ""^(n)C_n)/(""^nP_n)` =

A

`e^2`

B

`e^2-1`

C

`e^3`

D

`e^3 -1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

sum_(n=1)^(oo) (2n)/(n!)=

Which of the following statement is true Statement - I Coefficient of x^3 in e^(5x) is (5^2)/(3!) Statement - II sum_(n=1)^(oo)(""^(n)C_0+""^nC_1+""^(n)C_2+.......+""^nC_n)/(""^(n)P_n)=e^2-1

If S=Sigma_(n=1)^(oo) (""^(n)C_(0)+""^(n)C_(1)+""^(n)c_(2)+..+""^(n)C_(n))/(""^(n)P_(n)) then S equals

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

Let S_(n)=""^(n)C_(0)""^(n)C_(1)+""^(n)C_(1)""^(n)C_(2)+…..+""^(n)C_(n-1)""^(n)C_(n). "If" (S_(n+1))/(S_(n))=(15)/(4) , find the sum of all possible values of n (n in N)

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

The sum of sum_(n=1)^(oo) ""^(n)C_(2) . (3^(n-2))/(n!) equal

((1 + ""^nC_1 + ""^nC_2 + ""^nC_3+…….+nC_n)^2)/(1 + ""^(2n)C_1 + ""^(2n)C_2 + ""^(2n)C_3 + ……… + ""^(2n)C_(2n)) =

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)