Home
Class 12
MATHS
1+(log(e)5)/(1!) +(loge5)^2/(2!)+(loge5)...

`1+(log_(e)5)/(1!) +(log_e5)^2/(2!)+(log_e5)^3/(3!)+ .......oo `=

A

`e^(1/(log5))`

B

5

C

`1/5`

D

`1/7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \[ 1 + \frac{\log_e 5}{1!} + \frac{(\log_e 5)^2}{2!} + \frac{(\log_e 5)^3}{3!} + \ldots \] we can recognize that this series resembles the Taylor series expansion for the exponential function \( e^x \), which is given by: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] ### Step 1: Identify the variable \( x \) In our series, we can see that the variable \( x \) corresponds to \( \log_e 5 \). Therefore, we can rewrite the series as: \[ e^{\log_e 5} \] ### Step 2: Simplify \( e^{\log_e 5} \) Using the property of logarithms and exponentials, we know that: \[ e^{\log_e a} = a \] for any positive \( a \). Hence, we can simplify: \[ e^{\log_e 5} = 5 \] ### Conclusion Thus, the value of the given series is: \[ \boxed{5} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

P = 1 - (3)/(1!) + 9/(2!) - (27)/(3!) + ....... Q = 1+ (4)/(1!) +(16)/(2!) +(64)/(3!) + ........ R=log_(e)3+((log_e3)^2)/(2!)+((log_e3)^3)/(3!)+..... The ascending order of P,Q,R

1+(log_e n)^2 /(2!) + (log_e n )^4 / (4!)+...=

1+ 2 (log_ea)+(2^2)/(2!) (log_ea)^2 +(2^3)/(3!) (log_e a)^3+...=

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

(1+3)log_e3+(1+3^2)/(2!)(log_e3)^2+(1+3^3)/(3!)(log_e 3)^3+....oo= (a)28 (b) 30 (c)25 (d) 0

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

The sum of the series log_e(3)+(log_e(3))^3/(3!)+(log_e(3))^5/(5!)+....+ is

Let x and a be positive real numbers Statement 1: The sum of theries 1+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+(log_(e)x)^(2)+…to infty is x Statement2: The sum of the series 1+(xlog_(e)a)+(x^(2))/(2!)(log_(e)x))^(2)+(x^(3))/(3!)(log_(e)a)^(3)/(3!)+to infty is a^(x)

If agt0 and x in R , then 1+(xlog_(e)a)+(x^(2))/(2!)(log_(e)a)^(2)+(x^(3))/(3!)(log_(e)a)^(3)+….infty is equal to

int (dx)/(x(1+log_(e)x)(3+log_(e)x))