Home
Class 12
MATHS
1-log2+((log2)^2)/(2!) -(log2)^3/(3!)+.....

`1-log2+((log2)^2)/(2!) -(log2)^3/(3!)+....oo`

A

2

B

`1/2`

C

`log 3`

D

`log 4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = 1 - \log 2 + \frac{(\log 2)^2}{2!} - \frac{(\log 2)^3}{3!} + \ldots \), we can recognize that it resembles the Taylor series expansion for the exponential function. The Taylor series for \( e^x \) is given by: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] However, in our case, we have a series with alternating signs. This suggests that we can use the series for \( e^{-x} \): \[ e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \] ### Step 1: Identify \( x \) In our series, we can set \( x = \log 2 \). Thus, we rewrite the series: \[ S = e^{-\log 2} \] ### Step 2: Simplify \( e^{-\log 2} \) Using the property of logarithms and exponentials, we know that: \[ e^{-\log 2} = \frac{1}{e^{\log 2}} = \frac{1}{2} \] ### Step 3: Conclusion Thus, the value of the series \( S \) is: \[ S = \frac{1}{2} \] ### Final Answer Therefore, the value of the series \( 1 - \log 2 + \frac{(\log 2)^2}{2!} - \frac{(\log 2)^3}{3!} + \ldots \) is \( \frac{1}{2} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

1+(log_(e)5)/(1!) +(log_e5)^2/(2!)+(log_e5)^3/(3!)+ .......oo =

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

1+ 2 (log_ea)+(2^2)/(2!) (log_ea)^2 +(2^3)/(3!) (log_e a)^3+...=

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

The number N=(1+2log_(3)2)/((1+log_(3)2)^(2))+(log_(6)2)^(2) when simplified reduces to:

If 2^(x+y)=6^ya n d3^(x-1)=2^(y+1), then the value of (log3-log2)(x-y) is 1 (b) (log)_2 3- (log)_3 2 (c) log(3/2) (d) none of these

Solve (log)_2(3x-2)=(log)_(1/2)x

Solve (log)_2(3x-2)=(log)_(1/2)x

log5-(log25)/(2^(2))+(log125)/(3^(2))-(log625)/(4^(2))+ ……

If 3^(x) = 4^(x-1) , then x = a. (2 log_(3) 2)/(2log_(3) 2-1) b. 2/(2-log_(2)3) c. 1/(1-log_(4)3) d. (2 log_(2)3)/(2 log_(2) 3-1)