Home
Class 12
MATHS
1+ 2 (logea)+(2^2)/(2!) (logea)^2 +(2^3)...

`1+ 2 (log_ea)+(2^2)/(2!) (log_ea)^2 +(2^3)/(3!) (log_e a)^3+...=`

A

e

B

a

C

`a^2`

D

`e^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series: \[ 1 + 2 (\log_e a) + \frac{2^2}{2!} (\log_e a)^2 + \frac{2^3}{3!} (\log_e a)^3 + \ldots \] we can recognize that this series resembles the Taylor series expansion for the exponential function \( e^x \), which is given by: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] ### Step 1: Identify the variable in the series In our series, we can see that the term \( 2 (\log_e a) \) can be treated as \( x \) in the exponential series. Thus, we can rewrite the series as: \[ 1 + \frac{(2 \log_e a)}{1!} + \frac{(2 \log_e a)^2}{2!} + \frac{(2 \log_e a)^3}{3!} + \ldots \] ### Step 2: Recognize the series as an exponential function This series can be recognized as the expansion of \( e^{x} \) where \( x = 2 \log_e a \): \[ e^{2 \log_e a} = 1 + \frac{(2 \log_e a)}{1!} + \frac{(2 \log_e a)^2}{2!} + \frac{(2 \log_e a)^3}{3!} + \ldots \] ### Step 3: Simplify the exponential expression Using the property of logarithms, we know that: \[ e^{\log_e b} = b \] Thus, we can simplify \( e^{2 \log_e a} \): \[ e^{2 \log_e a} = a^2 \] ### Conclusion Therefore, the value of the series is: \[ 1 + 2 (\log_e a) + \frac{2^2}{2!} (\log_e a)^2 + \frac{2^3}{3!} (\log_e a)^3 + \ldots = a^2 \] ### Final Answer The answer is \( a^2 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+3)log_e3+(1+3^2)/(2!)(log_e3)^2+(1+3^3)/(3!)(log_e 3)^3+....oo= (a)28 (b) 30 (c)25 (d) 0

If agt0 and x in R , then 1+(xlog_(e)a)+(x^(2))/(2!)(log_(e)a)^(2)+(x^(3))/(3!)(log_(e)a)^(3)+….infty is equal to

Let x and a be positive real numbers Statement 1: The sum of theries 1+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+(log_(e)x)^(2)+…to infty is x Statement2: The sum of the series 1+(xlog_(e)a)+(x^(2))/(2!)(log_(e)x))^(2)+(x^(3))/(3!)(log_(e)a)^(3)/(3!)+to infty is a^(x)

1+(log_(e)5)/(1!) +(log_e5)^2/(2!)+(log_e5)^3/(3!)+ .......oo =

1-log2+((log2)^2)/(2!) -(log2)^3/(3!)+....oo

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

A value of C for which the conclusion of Mean Value Theorem holds for the function f(x)""=""(log)_e x on the interval [1, 3] is (1) 2(log)_3e (2) 1/2""(log)_e3 (3) (log)_3e (4) (log)_e3

P = 1 - (3)/(1!) + 9/(2!) - (27)/(3!) + ....... Q = 1+ (4)/(1!) +(16)/(2!) +(64)/(3!) + ........ R=log_(e)3+((log_e3)^2)/(2!)+((log_e3)^3)/(3!)+..... The ascending order of P,Q,R

If 3^(x) = 4^(x-1) , then x = a. (2 log_(3) 2)/(2log_(3) 2-1) b. 2/(2-log_(2)3) c. 1/(1-log_(4)3) d. (2 log_(2)3)/(2 log_(2) 3-1)

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty