Home
Class 12
MATHS
(1+3/(1!) +9/(2!) +(27)/(3!) + .....oo) ...

`(1+3/(1!) +9/(2!) +(27)/(3!) + .....oo) (1+9/(1!) +(81)/(2!)+(729)/(3!)+ .....oo)`=

A

1

B

`e^2`

C

`e^3`

D

`e^12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the product of two infinite series: \[ (1 + \frac{3}{1!} + \frac{9}{2!} + \frac{27}{3!} + \ldots) \times (1 + \frac{9}{1!} + \frac{81}{2!} + \frac{729}{3!} + \ldots) \] ### Step 1: Identify the first series The first series can be recognized as follows: \[ 1 + \frac{3}{1!} + \frac{9}{2!} + \frac{27}{3!} + \ldots \] This series resembles the Taylor series expansion for \( e^x \), which is: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] In our case, if we let \( x = 3 \), we can rewrite the first series as: \[ e^3 \] ### Step 2: Identify the second series Now, let's analyze the second series: \[ 1 + \frac{9}{1!} + \frac{81}{2!} + \frac{729}{3!} + \ldots \] This series also resembles the Taylor series expansion for \( e^x \). If we let \( x = 9 \), we can rewrite the second series as: \[ e^9 \] ### Step 3: Multiply the two series Now that we have identified both series, we can multiply them: \[ e^3 \times e^9 \] Using the property of exponents, we can combine the exponents: \[ e^{3 + 9} = e^{12} \] ### Final Answer Thus, the value of the given expression is: \[ e^{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1+3/(1!) +5/(2!) + (7)/(3!) + ......oo=

1/(3!) +2/(5!) + (3)/(7!) + .....oo =

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

1/(2!)-1/(3!)+1/(4!) .....oo =

If (1+1/(1!)+(1)/(2!)+......oo) (1-(1)/(1!) +1/(2!) -1/(3!) + ......oo)=

1 +(2^3)/(1!) x + (3^3)/(2!) x^2 + ....oo =

1+ 1/(2!)+2/(3!)+4/(4!)+ .... oo =

1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo

(1/(2!)+1/(4!)+1/(6!)+ ....oo)/(1+1/(3!)+1/(5!)+....oo)

((y-1)-(1)/(2)(y-1)^(2)+(1)/(3)(y-1)^(3)-....oo)/((a-1)-(1)/(2)(a-1)^(2)+(1)/(3)(a-1)^(3)-....oo)=