Home
Class 12
MATHS
sum(n=1) ^(oo) (1)/((2n-1)!)=...

`sum_(n=1) ^(oo) (1)/((2n-1)!)= `

A

`(e+e^(-1))/2`

B

`(e-e^(-1))/2`

C

`e/3`

D

`1/(3e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{n=1}^{\infty} \frac{1}{(2n-1)!} \), we can follow these steps: ### Step 1: Understand the Series The series we need to evaluate is: \[ S = \sum_{n=1}^{\infty} \frac{1}{(2n-1)!} \] This series sums the reciprocals of the factorials of all odd integers. ### Step 2: Relate to the Exponential Function Recall the Taylor series expansion for the exponential function \( e^x \): \[ e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \] We can separate this into even and odd terms: \[ e^x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} \] The first sum represents the even factorials and the second sum represents the odd factorials. ### Step 3: Evaluate the Series for Specific Values Let’s evaluate \( e^x \) at \( x = 1 \) and \( x = -1 \): 1. For \( x = 1 \): \[ e^1 = \sum_{k=0}^{\infty} \frac{1^k}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!} \] 2. For \( x = -1 \): \[ e^{-1} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \] ### Step 4: Combine the Results Now, we can combine these two results: \[ e^1 + e^{-1} = \sum_{k=0}^{\infty} \frac{1}{(2k)!} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \] The left-hand side gives us: \[ e + \frac{1}{e} \] The right-hand side separates into even and odd factorials: \[ \sum_{k=0}^{\infty} \frac{1}{(2k)!} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \] ### Step 5: Isolate the Odd Factorials To isolate the odd factorials, we can subtract the even series from the total: \[ \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} = e + \frac{1}{e} - \sum_{k=0}^{\infty} \frac{1}{(2k)!} \] ### Step 6: Find the Even Factorial Series The even factorial series can be expressed as: \[ \sum_{k=0}^{\infty} \frac{1}{(2k)!} = \cosh(1) \] Thus, we can write: \[ S = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} = e + \frac{1}{e} - \cosh(1) \] ### Step 7: Final Calculation The value of \( S \) can be simplified using known values of \( e \) and \( \cosh(1) \): \[ S = \frac{e + \frac{1}{e}}{2} \] ### Conclusion Thus, the final result for the series \( \sum_{n=1}^{\infty} \frac{1}{(2n-1)!} \) is: \[ S = \frac{e - e^{-1}}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

sum_(n=1)^(oo) (2n)/(n!)=

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

p=sum_(n=0)^(oo) (x^(3n))/((3n)!) , q=sum_(n=1)^(oo) (x^(3n-2))/((3n-2)!), r = sum_(n=1)^(oo) (x^(3n-1))/((3n-1)!) then p + q + r =

sum_(n=1)^(oo) ((log_ex)^(2n-1))/((2n-1)!)=

The value of sum_(n=1)^oo\ (n^2+1)/((n+2)n!) is

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

The sum of series Sigma_(n=1)^(oo) (2n)/(2n+1)! is

If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals