Home
Class 12
MATHS
e^(7x)-e^(-7x)=...

`e^(7x)-e^(-7x)=`

A

`1 + (7x)/(2!) +((7x)^2)/(2!) +......`

B

`1 + ((7x^2))/(2!) +((7x)^4)/(4!) +......`

C

`2(1 + ((7x)^2)/(2!) +((7x)^4)/(4!) +......)`

D

`2(1 + (7x)/(1!) +((7x)^3)/(3!) +((7x)^5)/(5!) +...)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( e^{7x} - e^{-7x} \), we will use the Taylor series expansion for the exponential function. Here are the steps to find the solution: ### Step 1: Write the Taylor Series for \( e^{x} \) The Taylor series expansion for \( e^{x} \) around \( x = 0 \) is given by: \[ e^{x} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \] ### Step 2: Substitute \( 7x \) into the Series Now, substituting \( 7x \) into the series, we get: \[ e^{7x} = 1 + \frac{7x}{1!} + \frac{(7x)^2}{2!} + \frac{(7x)^3}{3!} + \cdots \] ### Step 3: Write the Taylor Series for \( e^{-x} \) Similarly, the Taylor series for \( e^{-x} \) is: \[ e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots \] ### Step 4: Substitute \( -7x \) into the Series Substituting \( -7x \) into the series for \( e^{-x} \), we have: \[ e^{-7x} = 1 - \frac{7x}{1!} + \frac{(7x)^2}{2!} - \frac{(7x)^3}{3!} + \cdots \] ### Step 5: Combine the Two Series Now, we will subtract the series for \( e^{-7x} \) from the series for \( e^{7x} \): \[ e^{7x} - e^{-7x} = \left(1 + \frac{7x}{1!} + \frac{(7x)^2}{2!} + \frac{(7x)^3}{3!} + \cdots\right) - \left(1 - \frac{7x}{1!} + \frac{(7x)^2}{2!} - \frac{(7x)^3}{3!} + \cdots\right) \] ### Step 6: Simplify the Expression When we simplify this expression, we see that the constant terms (1) cancel out: \[ e^{7x} - e^{-7x} = \left(\frac{7x}{1!} + \frac{(7x)^3}{3!} + \cdots\right) + \left(\frac{7x}{1!} + \frac{(7x)^3}{3!} + \cdots\right) \] This results in: \[ e^{7x} - e^{-7x} = 2\left(\frac{7x}{1!} + \frac{(7x)^3}{3!} + \cdots\right) \] ### Final Result Thus, the final result is: \[ e^{7x} - e^{-7x} = 2\left(\frac{7x}{1!} + \frac{(7x)^3}{3!} + \cdots\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=500e^(7x)+600e^(-7x) , shows that (d^(2)y)/(dx^(2))=49y .

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to 'x'

If y=500 e^(7x)+600 e^(-7x) , show that (d^2y)/(dx^2)=49 y

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

If y=500\ e^(7x)+600\ e^(-7x) , show that (d^2y)/(dx^2)=49\ y .

In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

In the following questions verify that the given function is a solution of the given differential equation : y = e^(x) + e^(2x) + e^(-3x), y''' - 7y' + 6y = 0

int(e^(2x)+2e^x-e^(-x)-1)e^(e^x+e^(-x))dx=g(x)e^(e^x+e^(-x)) , then find g(0) .

Differentiate (e^x+e^(-x))/(e^x-e^(-x)) with respect to x .

The coeffiecient of x^n in the expansion of (e^(7x) +e^x)/(e^(3x)) is