Home
Class 12
MATHS
1+(omega^2x)/(1!)+(omegax^2)/(2!)+(x^3)/...

`1+(omega^2x)/(1!)+(omegax^2)/(2!)+(x^3)/(3!) + (omega^2x^4)/(4!) +(omegax^5)/(5!) +(x^6)/(6!) + .... oo = `

A

`e^x`

B

`e^(omegax)`

C

`e^(omega^(2)x)`

D

`e^(omega^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ S = 1 + \frac{\omega^2 x}{1!} + \frac{\omega x^2}{2!} + \frac{x^3}{3!} + \frac{\omega^2 x^4}{4!} + \frac{\omega x^5}{5!} + \frac{x^6}{6!} + \ldots \] where \(\omega\) is a cube root of unity, we can follow these steps: ### Step 1: Understanding the Series The series can be rewritten by observing the pattern in the coefficients. The terms alternate between \(\omega^2\), \(\omega\), and \(1\) based on the power of \(x\). ### Step 2: Recognizing the Pattern The coefficients of the series can be grouped based on the powers of \(x\): - For \(n = 0\): \(1\) - For \(n = 1\): \(\frac{\omega^2 x}{1!}\) - For \(n = 2\): \(\frac{\omega x^2}{2!}\) - For \(n = 3\): \(\frac{x^3}{3!}\) - For \(n = 4\): \(\frac{\omega^2 x^4}{4!}\) - For \(n = 5\): \(\frac{\omega x^5}{5!}\) - For \(n = 6\): \(\frac{x^6}{6!}\) - And so on... ### Step 3: Using the Exponential Series We know that the exponential function can be expressed as: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] We can use this to express the series in terms of \(e^{\omega^2 x}\) and \(e^{\omega x}\). ### Step 4: Grouping Terms We can express the series as: \[ S = e^{\omega^2 x} + e^{\omega x} + e^{x} \] However, we need to recognize that the series can be simplified by considering the periodicity of \(\omega\). ### Step 5: Final Expression Since \(\omega^3 = 1\), we can conclude that the series converges to: \[ S = e^{\omega^2 x} \] ### Conclusion Thus, the value of the series is: \[ S = e^{\omega^2 x} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1+(omegax)/(1!) +(omega^2x^2)/(2!)+(omega^3x^3)/(3!)+(omega^4x^4)/(4!)+(omega^5x^5)/(5!)+ .....oo =

(1+x^2/(2!) +x^4 /(4!) + .....oo)^(2) - (x+x^3/(3!) +x^(5)/(5!) + ....oo)^(2) =

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

Solve (2x+3)/(5) gt (4x-1)/(2), x in W

The series expansion of log[(1 + x)^((1 + x))(1-x)^(1-x)] is (1) 2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (2) [(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (3) 2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...] (4) 2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]

If 1,x_(1),x_(2),x_(3) are the roots of x^(4)-1=0andomega is a complex cube root of unity, find the value of ((omega^(2)-x_(1))(omega^(2)-x_(2))(omega^(2)-x_(3)))/((omega-x_(1))(omega-x_(2))(omega-x_(3)))

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

The coefficient of x^5 in the expansion of (1+x/(1!)+x^2/(2!)+x^3/(3!)+x^4/(4!)+x^5/(5!))^2 is

2((2x)/(x^(2)+1)+(1)/(3)((2x)/(x^(2)+1))^(3) +(1)/(5)((2x)/(x^(2)+1))^(5)+…..oo)=

cot^(2)x-(1)/(2)cot^(4)x+(1)/(3)cot^(6)x -(1)/(4)cot^(8)x+…oo=