Home
Class 12
MATHS
Assertion (A) : x + x^(2)/(1!) + x^(3) /...

Assertion (A) : `x + x^(2)/(1!) + x^(3) /(2!) + (x^4)/(3!) + .....+ oo = f(x)`
Then the series f(1), f(2) ,f(3) ,f(4) ... Are in G.P .
Reason (R) : In the above series `f'(x) = e^(x) (x+1)`

A

A is true, R is true and R is correct explanation of A

B

A is true, R is true and R is not correct explanation of A

C

A is true , R is false

D

A is false, R is true

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If f(1) = 1, f'(1) = 3, then the derivative of f(f(x))) + (f(x))^(2) at x = 1 is

If f((xy)/(2)) = (f(x).f(y))/(2), x, y in R, f(1) = f'(1)."Then", (f(3))/(f'(3)) is.........

if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

If f(x) =x^4 + 3x ^2 - 6x -2 then the coefficient of x^3 in f(x +1) is

If f(x) = 1/2 (3^x + 3^(-x)), g(x) = 1/2 (3^x - 3^(-x)) , then f(x) \ g(y)+f(y) \ g(x)=