Home
Class 12
MATHS
If a = underset(n=1)overset(infty)Sigma(...

If `a = underset(n=1)overset(infty)Sigma(2n)/(2n-1!),b=underset(n=1)overset(infty)Sigma(2n)/(2n+1!)` then ab equals

A

1

B

`e^2`

C

`(e-1)/(e+1)`

D

`(e+1)/(e-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

Find the underset(k=1)overset(oo)sumunderset(n=1)overset(oo)sumk/(2^(n+k)) .

The value of cot (underset(n=1)overset(23)sum cot^(-1) (1 + underset(k=1)overset(n)sum 2k)) is

If f(x) = (a^(x))/(a^(x) + sqrt(a)), a gt 0 prove that (i) f(x) + f(1-x) = 1 (ii) underset(k=1)overset(2n-1)sum 2f ((k)/(2n)) = 2n-1 (iii) underset(k=1)overset(2n)sum 2f((k)/(2n+1)) = 2n

underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n) is equal to

The sum, underset(n-1)overset(10)(Sigma)(n(2n+1)(2n-1))/5 is equal to.........

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

Let S_(k)=underset(ntooo)limunderset(i=0)overset(n)sum(1)/((k+1)^(i))." Then "underset(k=1)overset(n)sumkS_(k) equals

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n) (a) underset(0)overset(1)intx^(n-1)(1+x)^(n)dx (b) underset(1)overset(2)intx^(n)(x-1)^(n-1)dx (c) underset(1)overset(2)int(1+x)^(n)dx (d) underset(0)overset(1)int(1-x)^(n)x^(n-1)dx