Home
Class 12
MATHS
x +(x^2)/(3!)+(x^3)/(5!) + ......oo =...

`x +(x^2)/(3!)+(x^3)/(5!) + ......oo =`

A

`sqrtx ((e^(sqrtx)-e^(-sqrtx)))/2`

B

`sqrtx ((e^(sqrtx)+e^(-sqrtx)))/2`

C

`sqrtx ((e^(x)+e^(-x)))/2`

D

`sqrtx ((e^(x)-e^(-x)))/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+x^2/(2!) +x^4 /(4!) + .....oo)^(2) - (x+x^3/(3!) +x^(5)/(5!) + ....oo)^(2) =

1+(omega^2x)/(1!)+(omegax^2)/(2!)+(x^3)/(3!) + (omega^2x^4)/(4!) +(omegax^5)/(5!) +(x^6)/(6!) + .... oo =

1 +(2^3)/(1!) x + (3^3)/(2!) x^2 + ....oo =

1+(omegax)/(1!) +(omega^2x^2)/(2!)+(omega^3x^3)/(3!)+(omega^4x^4)/(4!)+(omega^5x^5)/(5!)+ .....oo =

If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))/(5) + ….oo))/((x + (x^(3))/(3) + (x^(5))/(5) + ……oo)) =

If y=x+(x^(2))/(2)+(x^(3))/(3)+....oo , then x =

Assertion (A) : If x+(x^(2))/(2)+(x^(3))/(3)+………oo=log((7)/(6)) then x=(1)/(7) Reason (R ) : If |x| lt 1 , then x+(x^(2))/(2)+(x^(3))/(3)+…..oo=log((1)/(1-x))

Find the sum of series 4 - 9x + 16 x^(2) - 25 x^(3) + 36 x^(4) - 49 x^(5) + ...oo

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

The series . (2x)/(x + 3) + ((2x)/(x + 3))^(2) + ((2x)/(x + 3))^(3) + ...oo have a definite sum when