Home
Class 12
MATHS
If S=underset(n=0)overset(infty)Sigma(lo...

If `S=underset(n=0)overset(infty)Sigma(logx)^(2n)/(2n!)` , then S equals

A

x + 1

B

x - 1

C

`x^2 +1 `

D

`(x^2+1)/(2x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If S=Sigma_(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=underset(r=0)overset(n)suma^(r ) , then n is equal to

underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n) is equal to

If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007! , then value of n is

Sigma_(n=1)^(oo) (x^(2n))/(2n-1) is equal to

The sum, underset(n-1)overset(10)(Sigma)(n(2n+1)(2n-1))/5 is equal to.........

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to