Home
Class 12
MATHS
(1+x^2/(2!) +x^4 /(4!) + .....oo)^(2) - ...

`(1+x^2/(2!) +x^4 /(4!) + .....oo)^(2) - (x+x^3/(3!) +x^(5)/(5!) + ....oo)^(2) = `

A

`-1`

B

5

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the two series and utilize the properties of exponential functions. ### Step 1: Identify the series The first series is: \[ 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \] This series represents the even powers of \(x\) in the expansion of \(e^x\). The second series is: \[ x + \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots \] This series represents the odd powers of \(x\) in the expansion of \(e^x\). ### Step 2: Relate the series to exponential functions The series can be expressed using the exponential function: - The first series can be recognized as: \[ \frac{e^x + e^{-x}}{2} \] This is because \(e^x + e^{-x}\) contains all even powers of \(x\). - The second series can be recognized as: \[ \frac{e^x - e^{-x}}{2} \] This is because \(e^x - e^{-x}\) contains all odd powers of \(x\). ### Step 3: Square the series Now we need to square both series: \[ \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2 \] ### Step 4: Use the difference of squares Using the identity \(a^2 - b^2 = (a + b)(a - b)\), we can rewrite the expression: Let \(a = \frac{e^x + e^{-x}}{2}\) and \(b = \frac{e^x - e^{-x}}{2}\). Then: \[ a + b = \frac{(e^x + e^{-x}) + (e^x - e^{-x})}{2} = \frac{2e^x}{2} = e^x \] \[ a - b = \frac{(e^x + e^{-x}) - (e^x - e^{-x})}{2} = \frac{2e^{-x}}{2} = e^{-x} \] ### Step 5: Substitute back into the expression Now substituting back, we have: \[ (e^x)(e^{-x}) = 1 \] ### Conclusion Thus, the final result of the expression is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

x +(x^2)/(3!)+(x^3)/(5!) + ......oo =

If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))/(5) + ….oo))/((x + (x^(3))/(3) + (x^(5))/(5) + ……oo)) =

1+(omega^2x)/(1!)+(omegax^2)/(2!)+(x^3)/(3!) + (omega^2x^4)/(4!) +(omegax^5)/(5!) +(x^6)/(6!) + .... oo =

If y= 1+ x + (x^2)/( 2!) + (x^3)/( 3!) + (x^4)/(4!) +…. to oo , show that (dy)/( dx) = y .

1+(omegax)/(1!) +(omega^2x^2)/(2!)+(omega^3x^3)/(3!)+(omega^4x^4)/(4!)+(omega^5x^5)/(5!)+ .....oo =

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

Cofficient of x^4 in 1+(1+x+x^2)/(1!) +((1+x+x^2)^2)/(2!) +((1+x+x^2)^3)/(3!) + ....oo =

If y=x+(x^(2))/(2)+(x^(3))/(3)+....oo , then x =

If x-x^2/2+x^3/3+x^4/4+..... to oo=y , then y+y^2/(2!)+y^3/(3!)+.... + to oo is equal to

Find the sum of series 4 - 9x + 16 x^(2) - 25 x^(3) + 36 x^(4) - 49 x^(5) + ...oo