Home
Class 12
MATHS
4/(1!) +16/(3!)+(64)/(5!) + ......=...

`4/(1!) +16/(3!)+(64)/(5!) + ......= `

A

`e +1/e`

B

`e -1/e`

C

`e^2 + 1/e^2`

D

`e^(2) -1/e^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( S = \frac{4}{1!} + \frac{16}{3!} + \frac{64}{5!} + \ldots \), we can identify a pattern in the terms. ### Step 1: Identify the general term The terms can be expressed as: - The first term is \( \frac{4}{1!} = \frac{2^2}{1!} \) - The second term is \( \frac{16}{3!} = \frac{4^2}{3!} = \frac{(2^2)^2}{3!} \) - The third term is \( \frac{64}{5!} = \frac{8^2}{5!} = \frac{(2^3)^2}{5!} \) We can see that the \( n \)-th term (for odd \( n \)) can be expressed as: \[ \frac{(2^{n})^2}{(n)!} \] where \( n \) takes odd values (1, 3, 5, ...). ### Step 2: Write the series in summation form The series can be rewritten as: \[ S = \sum_{k=0}^{\infty} \frac{(2^{2k})}{(2k+1)!} \] This represents the sum of the series for odd factorial denominators. ### Step 3: Relate to exponential functions Recall the Taylor series expansion for \( e^x \): \[ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \] We can use this to find the series for \( e^{2} \) and \( e^{-2} \). ### Step 4: Calculate \( e^2 \) and \( e^{-2} \) The series for \( e^2 \) is: \[ e^2 = \sum_{n=0}^{\infty} \frac{2^n}{n!} \] The series for \( e^{-2} \) is: \[ e^{-2} = \sum_{n=0}^{\infty} \frac{(-2)^n}{n!} \] ### Step 5: Combine the series By combining \( e^2 \) and \( e^{-2} \): \[ e^2 + e^{-2} = 2 + \sum_{k=1}^{\infty} \left( \frac{2^{2k}}{(2k)!} + \frac{(-2)^{2k}}{(2k)!} \right) \] The odd terms will cancel out, leaving us with: \[ e^2 - e^{-2} = 2 \sum_{k=0}^{\infty} \frac{(2^{2k})}{(2k+1)!} \] ### Step 6: Solve for \( S \) Thus, we have: \[ S = \frac{1}{2} (e^2 - e^{-2}) \] ### Final Result Using the identity \( e^x - e^{-x} = 2\sinh(x) \), we find: \[ S = \frac{1}{2} (e^2 - e^{-2}) = \sinh(2) \] ### Conclusion The value of the series \( S = \frac{4}{1!} + \frac{16}{3!} + \frac{64}{5!} + \ldots \) is: \[ S = \sinh(2) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

P = 1 - (3)/(1!) + 9/(2!) - (27)/(3!) + ....... Q = 1+ (4)/(1!) +(16)/(2!) +(64)/(3!) + ........ R=log_(e)3+((log_e3)^2)/(2!)+((log_e3)^3)/(3!)+..... The ascending order of P,Q,R

16/(2!)+(64)/(3!) + (256)/(4!) + ..... oo =

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (c) (16)/7 (d) none of these

{(1/3)^(-3)-(1/2)^(-3)}-:(1/4)^(-3) = (a) (19)/(64) (b) (64)/(19) (c) (27)/(16) (d) (-19)/(64)

If the surm of the first ten terms of the series, (1 3/5)^2+(2 2/5)^2+(3 1/5)^2+4^2+(4 4/5)^2+........ , is 16/5m ,then m is equal to

Which of the following orders of the fractions are in ascending order ? (a).1/(8), 2/(8), 5/(8) (b).3/(4), 1/(4), 2/(4) (c).1/(2), 4/(2), 3/(2) (d). 4/(16), 2/(16), 1/(16)

Evaluate : ((1)/(4)) ^(-2) - 3 (32)^((2)/(5)) xx ( 7) ^(0) +((9)/(16))^(-(1)/(2))

The sum of the series 1+(1)/(4)+(1)/(16)+(1)/(64)+....oo is

Find the 9^(th) term of the series : 1,4,16,64 . . . . . . . . . . .

Find the values of :- (1) (8)^(1//3) (2) (64)^(1//2) (3) 4^(5//2) (4) (36)^(3//2) (5) (27)^(2//3)