Home
Class 12
MATHS
1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4...

`1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo`

A

e

B

`(3e)/2`

C

`(5e)/2`

D

`(7e)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ S = 1 + \frac{1+2}{2!} + \frac{1+2+3}{3!} + \frac{1+2+3+4}{4!} + \ldots \] we can break it down step by step. ### Step 1: Rewrite the series The series can be rewritten in terms of summation notation. The \(n\)-th term of the series can be expressed as: \[ \frac{1 + 2 + 3 + \ldots + n}{n!} \] Using the formula for the sum of the first \(n\) natural numbers, we have: \[ 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \] Thus, the \(n\)-th term becomes: \[ \frac{\frac{n(n + 1)}{2}}{n!} = \frac{n(n + 1)}{2n!} \] ### Step 2: Simplify the terms We can simplify the term further: \[ \frac{n(n + 1)}{2n!} = \frac{1}{2} \cdot \frac{n(n + 1)}{n!} = \frac{1}{2} \cdot \frac{n + 1}{(n - 1)!} \] Thus, the series can be rewritten as: \[ S = 1 + \sum_{n=2}^{\infty} \frac{n(n + 1)}{2n!} \] ### Step 3: Split the series We can split the series into two parts: \[ S = 1 + \frac{1}{2} \sum_{n=2}^{\infty} \frac{n}{(n-1)!} + \frac{1}{2} \sum_{n=2}^{\infty} \frac{1}{(n-2)!} \] ### Step 4: Evaluate the first sum The first sum can be simplified: \[ \sum_{n=2}^{\infty} \frac{n}{(n-1)!} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} = e \] ### Step 5: Evaluate the second sum The second sum can be simplified as follows: \[ \sum_{n=2}^{\infty} \frac{1}{(n-2)!} = \sum_{m=0}^{\infty} \frac{1}{m!} = e \] ### Step 6: Combine results Now, substituting back into the equation for \(S\): \[ S = 1 + \frac{1}{2} \cdot e + \frac{1}{2} \cdot e = 1 + e \] ### Final Step: Conclusion Thus, the final result for the series is: \[ S = 1 + e \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

1/(2!)-1/(3!)+1/(4!) .....oo =

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

Cofficient of x^4 in 1+(1+x+x^2)/(1!) +((1+x+x^2)^2)/(2!) +((1+x+x^2)^3)/(3!) + ....oo =

1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6) + …… oo =

If (1+1/(1!)+(1)/(2!)+......oo) (1-(1)/(1!) +1/(2!) -1/(3!) + ......oo)=

1+ 1/(2!)+2/(3!)+4/(4!)+ .... oo =

(1+3/(1!) +9/(2!) +(27)/(3!) + .....oo) (1+9/(1!) +(81)/(2!)+(729)/(3!)+ .....oo) =

1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then