Home
Class 12
MATHS
1+ 1/(2!)+2/(3!)+4/(4!)+ .... oo =...

`1+ 1/(2!)+2/(3!)+4/(4!)+ .... oo = `

A

`e^2`

B

`e^(2) +1`

C

`e^(2) -1`

D

`1/4 (e^(2) +1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = 1 + \frac{1}{2!} + \frac{2}{3!} + \frac{4}{4!} + \ldots \) up to infinity, we can use the properties of the exponential function. ### Step-by-step Solution: 1. **Identify the Series**: The series can be expressed as: \[ S = \sum_{n=0}^{\infty} \frac{a_n}{n!} \] where \( a_0 = 1, a_1 = 1, a_2 = 2, a_3 = 4, \ldots \) 2. **Recognize the Pattern**: The coefficients \( a_n \) seem to follow a pattern. We can observe that: \[ a_n = 2^{n-1} \text{ for } n \geq 1 \] Therefore, we can rewrite the series as: \[ S = 1 + \sum_{n=1}^{\infty} \frac{2^{n-1}}{n!} \] 3. **Factor Out Constants**: We can factor out \( 2 \) from the summation: \[ S = 1 + 2 \sum_{n=1}^{\infty} \frac{2^{n-2}}{(n-1)!} \] By changing the index of summation (let \( m = n-1 \)), we have: \[ S = 1 + 2 \sum_{m=0}^{\infty} \frac{2^{m}}{m!} \] 4. **Recognize the Exponential Function**: The series \( \sum_{m=0}^{\infty} \frac{2^{m}}{m!} \) is the Taylor series expansion for \( e^x \) evaluated at \( x = 2 \): \[ \sum_{m=0}^{\infty} \frac{2^{m}}{m!} = e^2 \] 5. **Substitute Back**: Now substituting back into the expression for \( S \): \[ S = 1 + 2e^2 \] 6. **Final Expression**: Thus, the series converges to: \[ S = 1 + 2e^2 \] ### Conclusion: The final result of the series is: \[ S = 1 + 2e^2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1/(2!)-1/(3!)+1/(4!) .....oo =

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

If x =3 + (4)/(2!) + (8)/(3!) + (16)/(4!) + .....oo then 1/x =

If (1+1/(1!)+(1)/(2!)+......oo) (1-(1)/(1!) +1/(2!) -1/(3!) + ......oo)=

(1+x^2/(2!)+x^4/(4!)+....oo)^2 =

1/2+1/4 +1/(8(2)!)+1/(16(3)!)+1/(32(4)!)+ .....oo =

(1+3/(1!) +9/(2!) +(27)/(3!) + .....oo) (1+9/(1!) +(81)/(2!)+(729)/(3!)+ .....oo) =

1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo

(1+x^2/(2!) +x^4 /(4!) + .....oo)^(2) - (x+x^3/(3!) +x^(5)/(5!) + ....oo)^(2) =