Home
Class 12
MATHS
(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6...

`(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......`

A

e

B

2e

C

3e

D

4e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = \frac{1 \cdot 3}{1!} + \frac{2 \cdot 4}{2!} + \frac{3 \cdot 5}{3!} + \frac{4 \cdot 6}{4!} + \ldots \), we can express the general term of the series and simplify it step by step. ### Step 1: Identify the general term The general term of the series can be expressed as: \[ T_n = \frac{n(n + 2)}{n!} \] This is because for each term, the numerator is \( n \) multiplied by \( n + 2 \). ### Step 2: Expand the general term We can expand \( T_n \): \[ T_n = \frac{n^2 + 2n}{n!} \] This can be split into two separate fractions: \[ T_n = \frac{n^2}{n!} + \frac{2n}{n!} \] ### Step 3: Simplify the fractions Now, we can simplify each term: \[ T_n = \frac{n^2}{n!} + \frac{2}{(n-1)!} \] Here, \( \frac{n^2}{n!} = \frac{n}{(n-1)!} \). Thus, we can rewrite \( T_n \) as: \[ T_n = \frac{n}{(n-1)!} + \frac{2}{(n-1)!} = \frac{n + 2}{(n-1)!} \] ### Step 4: Write the series Now we can write the series \( S \): \[ S = \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \left( \frac{n + 2}{(n-1)!} \right) \] ### Step 5: Split the summation We can split the summation into two parts: \[ S = \sum_{n=1}^{\infty} \frac{n}{(n-1)!} + \sum_{n=1}^{\infty} \frac{2}{(n-1)!} \] ### Step 6: Change the index of summation For the first summation, let \( k = n - 1 \): \[ \sum_{n=1}^{\infty} \frac{n}{(n-1)!} = \sum_{k=0}^{\infty} \frac{k + 1}{k!} = \sum_{k=0}^{\infty} \frac{k}{k!} + \sum_{k=0}^{\infty} \frac{1}{k!} \] The first part \( \sum_{k=0}^{\infty} \frac{k}{k!} = e \) and the second part \( \sum_{k=0}^{\infty} \frac{1}{k!} = e \). Thus, the first summation becomes: \[ \sum_{n=1}^{\infty} \frac{n}{(n-1)!} = e + e = 2e \] For the second summation: \[ \sum_{n=1}^{\infty} \frac{2}{(n-1)!} = 2 \sum_{k=0}^{\infty} \frac{1}{k!} = 2e \] ### Step 7: Combine the results Now, combine both parts: \[ S = 2e + 2e = 4e \] ### Final Answer Thus, the value of the series is: \[ \boxed{4e} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo

1/(2!)-1/(3!)+1/(4!) .....oo =

1+ 1/(2!)+2/(3!)+4/(4!)+ .... oo =

1+(omega^2x)/(1!)+(omegax^2)/(2!)+(x^3)/(3!) + (omega^2x^4)/(4!) +(omegax^5)/(5!) +(x^6)/(6!) + .... oo =

2 (5)/(4) - 4 (7)/(6) + 3 (1)/(3)

1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

1/2+1/4 +1/(8(2)!)+1/(16(3)!)+1/(32(4)!)+ .....oo =

1/(2.4) +(1.3)/(2.4.6)+(1.3.5)/(2.4.6.8)+.............oo is equal to

1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6) + …… oo =