Home
Class 12
MATHS
Which of the following statement is true...

Which of the following statement is true
Statement - I Coefficient of `x^3` in `e^(5x)` is `(5^2)/(3!)`
Statement - II `sum_(n=1)^(oo)(""^(n)C_0+""^nC_1+""^(n)C_2+.......+""^nC_n)/(""^(n)P_n)=e^2-1 `

A

only I

B

only II

C

both I and II

D

neither I nor II

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given statements is true, we will analyze each statement step by step. ### Step 1: Analyze Statement I **Statement I:** The coefficient of \(x^3\) in \(e^{5x}\) is \(\frac{5^2}{3!}\). 1. The series expansion of \(e^x\) is given by: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] 2. For \(e^{5x}\), we substitute \(x\) with \(5x\): \[ e^{5x} = 1 + \frac{5x}{1!} + \frac{(5x)^2}{2!} + \frac{(5x)^3}{3!} + \ldots \] 3. The term for \(x^3\) in this expansion is: \[ \frac{(5x)^3}{3!} = \frac{125x^3}{3!} \] 4. Therefore, the coefficient of \(x^3\) is: \[ \frac{125}{3!} = \frac{125}{6} \] 5. Since \(5^2 = 25\), the statement claims the coefficient is \(\frac{25}{6}\), which is incorrect because the correct coefficient is \(\frac{125}{6}\). **Conclusion for Statement I:** This statement is **false**. ### Step 2: Analyze Statement II **Statement II:** \(\sum_{n=1}^{\infty} \left( \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n} \right) / P(n) = e^2 - 1\). 1. The numerator \(\sum_{k=0}^{n} \binom{n}{k}\) represents the sum of the binomial coefficients, which equals \(2^n\) (by the binomial theorem). 2. The denominator \(P(n)\) is defined as \(n!\), so we rewrite the expression: \[ \sum_{n=1}^{\infty} \frac{2^n}{n!} \] 3. This series is recognized as the Taylor series expansion for \(e^x\) evaluated at \(x = 2\): \[ e^2 = 1 + \frac{2^1}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \ldots \] 4. Since the series starts from \(n=1\), we need to subtract the first term (which is 1): \[ \sum_{n=1}^{\infty} \frac{2^n}{n!} = e^2 - 1 \] **Conclusion for Statement II:** This statement is **true**. ### Final Conclusion - Statement I is **false**. - Statement II is **true**. Thus, the correct answer is that **only Statement II is true**.
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (""^(n)C_0+""^nC_1+.....+ ""^(n)C_n)/(""^nP_n) =

Statement 1: Coefficient of x^(14) in (1+2x+3x^2+....+16 x^(15))^2 is 560. Statement 2: sum_(r=1)^n r(n-r)=(n(n^2-1))/6dot

1/2. ""^nC_0 + ""^nC_1 + 2. ""^nC_2 + 2^2. ""^nC_3 + …….+ 2^(n-1) . ""^nC_n =

The sum of sum_(n=1)^(oo) ""^(n)C_(2) . (3^(n-2))/(n!) equal

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Statement 1: The coefficient of x^n in (1+x+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !))^3 is (3^n)/(n !) . Statement 2: The coefficient of x^n in e^(3x) is (3^n)/(n !)

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

If sum_(r=0)^(n-1)(("^nC_r)/(^nC_r+^nC_(r+1)))^3=4/5 then n=

Statement-1 sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1) Statement-2: sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0