Home
Class 12
MATHS
sum(n=1)^(oo)(2 n^2+n+1)/((n!)) =...

`sum_(n=1)^(oo)(2 n^2+n+1)/((n!))` =

A

2e - 1

B

2e + 1

C

6e - 1

D

6e + 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite series: \[ \sum_{n=1}^{\infty} \frac{2n^2 + n + 1}{n!} \] ### Step-by-Step Solution: 1. **Rewrite the series:** We can express the series as: \[ \sum_{n=1}^{\infty} \frac{2n^2 + n + 1}{n!} = \sum_{n=1}^{\infty} \frac{2n^2}{n!} + \sum_{n=1}^{\infty} \frac{n}{n!} + \sum_{n=1}^{\infty} \frac{1}{n!} \] 2. **Evaluate each component:** - **First term:** \[ \sum_{n=1}^{\infty} \frac{2n^2}{n!} = 2 \sum_{n=1}^{\infty} \frac{n^2}{n!} \] We know that: \[ \sum_{n=0}^{\infty} \frac{n^2}{n!} = e \] Therefore: \[ \sum_{n=1}^{\infty} \frac{n^2}{n!} = e \] Thus: \[ 2 \sum_{n=1}^{\infty} \frac{n^2}{n!} = 2e \] - **Second term:** \[ \sum_{n=1}^{\infty} \frac{n}{n!} = \sum_{n=0}^{\infty} \frac{n}{n!} = e \] - **Third term:** \[ \sum_{n=1}^{\infty} \frac{1}{n!} = e - 1 \] 3. **Combine the results:** Now we combine all the evaluated components: \[ \sum_{n=1}^{\infty} \frac{2n^2 + n + 1}{n!} = 2e + e + (e - 1) \] Simplifying this gives: \[ = 2e + e + e - 1 = 5e - 1 \] 4. **Final Result:** Therefore, the sum of the series is: \[ \sum_{n=1}^{\infty} \frac{2n^2 + n + 1}{n!} = 5e - 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1) ^(oo) (1)/((2n-1)!)=

p=sum_(n=0)^(oo) (x^(3n))/((3n)!) , q=sum_(n=1)^(oo) (x^(3n-2))/((3n-2)!), r = sum_(n=1)^(oo) (x^(3n-1))/((3n-1)!) then p + q + r =

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

The value of sum_(n=1)^oo\ (n^2+1)/((n+2)n!) is

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to _______.

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then