Home
Class 12
MATHS
If e^(ax) +e^(-bx) = p0 +p1x +p2x^2 + .....

If `e^(ax) +e^(-bx) = p_0 +p_1x +p_2x^2 + ....oo` then `(p_0 , p_1,p_2)` =

A

`(2,a -b , (a^2+b^2)/2) `

B

`(2,a + b , (a^2+b^2)/2) `

C

`(2, a-b,a^2+b^2)`

D

`(2,a - b , (a^2- b^2)/2) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coefficients \( p_0, p_1, \) and \( p_2 \) from the expression \( e^{ax} + e^{-bx} \). ### Step-by-Step Solution: 1. **Write the Series Expansion**: The exponential function can be expanded using its Taylor series: \[ e^{ax} = 1 + \frac{(ax)^1}{1!} + \frac{(ax)^2}{2!} + \frac{(ax)^3}{3!} + \ldots \] \[ e^{-bx} = 1 - \frac{(bx)^1}{1!} + \frac{(bx)^2}{2!} - \frac{(bx)^3}{3!} + \ldots \] 2. **Combine the Two Expansions**: Now, we add the two series: \[ e^{ax} + e^{-bx} = \left(1 + \frac{(ax)^1}{1!} + \frac{(ax)^2}{2!} + \ldots\right) + \left(1 - \frac{(bx)^1}{1!} + \frac{(bx)^2}{2!} - \ldots\right) \] This simplifies to: \[ = 2 + (a - b)x + \left(\frac{a^2}{2!} + \frac{b^2}{2!}\right)x^2 + \ldots \] 3. **Identify Coefficients**: From the combined series, we can identify the coefficients \( p_0, p_1, \) and \( p_2 \): - \( p_0 = 2 \) - \( p_1 = a - b \) - \( p_2 = \frac{a^2 + b^2}{2} \) 4. **Final Answer**: Therefore, the values of \( p_0, p_1, \) and \( p_2 \) are: \[ (p_0, p_1, p_2) = \left(2, a - b, \frac{a^2 + b^2}{2}\right) \] ### Summary: The final answer is: \[ (p_0, p_1, p_2) = \left(2, a - b, \frac{a^2 + b^2}{2}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let for a != a_1 != 0 , f(x)=ax^2+bx+c , g(x)=a_1x^2+b_1x+c_1 and p(x) = f(x) - g(x) . If p(x) = 0 only for x = -1 and p(-2) = 2 then the value of p(2) .

Let p_1,p_2,...,p_n and x be distinct real number such that (sum_(r=1)^(n-1)p_r^2)x^2+2(sum_(r=1)^(n-1)p_r p_(r+1))x+sum_(r=2)^n p_r^2 lt=0 then p_1,p_2,...,p_n are in G.P. and when a_1^2+a_2^2+a_3^2+...+a_n^2=0,a_1=a_2=a_3=...=a_n=0 Statement 2 : If p_2/p_1=p_3/p_2=....=p_n/p_(n-1), then p_1,p_2,...,p_n are in G.P.

Let P(x) be quadratic polynomical with real coefficient such tht for all real x(1) the relation 2(1 + P(x)) = P(x - 1) + P(x + 1) holds. If P(0) = 8 and P(2) = 32 then If the range of P(x) is [m, oo) then 'm' is less then

If P(x) = ax^(2) + bx + c , and Q(x) = -ax^(2) + dx + c, ax ne 0 then prove that P(x), Q(x) =0 has atleast two real roots.

Prove. If cosalpha +isinalpha is the solution of the equatioin x^n +p_1x^(n-1) +p_2 x^(n-2) +…+p_n =0 where p_1,p_2,p_3,…p_n are real then the value of p_1 sinalpha+p_2 sin2alpha+p_3sin3alpha+…+p_nsin nalpha=0

If p and q are the roots of the equation x^2-p x+q=0 , then (a) p=1,\ q=-2 (b) p=1,\ q=0 (c) p=-2,\ q=0 (d) p=-2,\ q=1

If alpha,beta roots of x^(2)-6p_(1)x+2=0,beta,gamma are roots of x^(2)-6p_(2)x+3=0and gamma,alpha are roots of equation x^(2)-6p_(3)x+6=0 where p_(1),p_(2),p_(3) are positive then The values of p_(1),p_(2),p_(3) respectively are

If the roots of the equation (1-q+p^(2)/2)x^(2) + p(1+q)x+q(q-1) +p^(2)/2=0 are equal, then show that p^(2) = 4q

Let P(x) be quadratic polynomical with real coefficient such tht for all real x the relation 2(1 + P(x)) = P(x - 1) + P(x + 1) holds. If P(0) = 8 and P(2) = 32 then Sum of all coefficients of P(x) can not be

Let P(x) be a polynomial of degree 11 such that P(x) = (1)/(x + 1) for x = 0, 1, 2, 3,"…."11 . The value of P(12) is.