Home
Class 12
MATHS
If (e^(x) -1)^(2) =a0 +a(1)x +a(2) x^2 +...

If `(e^(x) -1)^(2) =a_0 +a_(1)x +a_(2) x^2 + ......oo` then `a_4` =

A

`5/12`

B

`7/12`

C

`9/7`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient \( a_4 \) in the expansion of \( (e^x - 1)^2 \), we will follow these steps: ### Step 1: Expand \( (e^x - 1)^2 \) Using the formula for squaring a binomial, we have: \[ (e^x - 1)^2 = e^{2x} - 2e^x + 1 \] ### Step 2: Expand \( e^{2x} \) and \( e^x \) The series expansion for \( e^x \) is: \[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots \] Thus, for \( e^{2x} \): \[ e^{2x} = 1 + 2x + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \frac{(2x)^4}{4!} + \ldots = 1 + 2x + \frac{4x^2}{2} + \frac{8x^3}{6} + \frac{16x^4}{24} + \ldots \] This simplifies to: \[ e^{2x} = 1 + 2x + 2x^2 + \frac{4}{3}x^3 + \frac{2}{3}x^4 + \ldots \] For \( e^x \): \[ e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \ldots \] ### Step 3: Substitute into the expansion Now substituting back into our expression: \[ (e^x - 1)^2 = (1 + 2x + 2x^2 + \frac{4}{3}x^3 + \frac{2}{3}x^4 + \ldots) - 2(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \ldots) + 1 \] ### Step 4: Combine like terms Now, we will combine the terms: - The constant terms: \( 1 - 2 + 1 = 0 \) - The linear terms: \( 2x - 2x = 0 \) - The quadratic terms: \( 2x^2 - 2 \cdot \frac{x^2}{2} = 2x^2 - x^2 = x^2 \) - The cubic terms: \( \frac{4}{3}x^3 - 2 \cdot \frac{x^3}{6} = \frac{4}{3}x^3 - \frac{1}{3}x^3 = \frac{3}{3}x^3 = x^3 \) - The quartic terms: \( \frac{2}{3}x^4 - 2 \cdot \frac{x^4}{24} = \frac{2}{3}x^4 - \frac{1}{12}x^4 \) ### Step 5: Simplify the quartic term To simplify the quartic term: \[ \frac{2}{3} - \frac{1}{12} = \frac{8}{12} - \frac{1}{12} = \frac{7}{12} \] Thus, the quartic term is: \[ \frac{7}{12}x^4 \] ### Step 6: Identify \( a_4 \) From the expansion, we see that: \[ a_4 = \frac{7}{12} \] ### Final Answer Thus, the coefficient \( a_4 \) is: \[ \boxed{\frac{7}{12}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x-2x^2)^(6) = 1 + a_(1) x + a_(2) x^(2) + ... + a_(12) x^(12) , then find a_2+ a_4 + ... + a_12

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , then sum_(r=1)^(50) a_(r) equal to

If (x^(2) + x)/(1-x) = a_(1) x + a_(2) x^(2) + ... to infty , |x| lt 1, then

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

If log_(e )((1+x)/(1-x))=a_(0)+a_(1)x+a_(2)x^(2)+…oo then a_(1), a_(3), a_(5) are in

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^() "……" + a_(40)x^(40) , then following questions. The value of a_(0) +a_(2) + a_(4)+ "……" + a_(38) is