Home
Class 12
MATHS
1+(omegax)/(1!) +(omega^2x^2)/(2!)+(omeg...

`1+(omegax)/(1!) +(omega^2x^2)/(2!)+(omega^3x^3)/(3!)+(omega^4x^4)/(4!)+(omega^5x^5)/(5!)+ .....oo =`

A

`e^x`

B

`e^(omegax)`

C

`e^(omega^(2)x)`

D

`e^(x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series: \[ S = 1 + \frac{\omega x}{1!} + \frac{\omega^2 x^2}{2!} + \frac{\omega^3 x^3}{3!} + \frac{\omega^4 x^4}{4!} + \frac{\omega^5 x^5}{5!} + \ldots \] we can recognize that this series resembles the Taylor series expansion for the exponential function. ### Step-by-Step Solution: 1. **Identify the Series**: The series can be rewritten as: \[ S = \sum_{n=0}^{\infty} \frac{(\omega x)^n}{n!} \] This is the general form of the Taylor series for \( e^y \) where \( y = \omega x \). 2. **Recall the Exponential Function**: The Taylor series expansion for \( e^y \) is given by: \[ e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!} \] By substituting \( y = \omega x \), we get: \[ e^{\omega x} = \sum_{n=0}^{\infty} \frac{(\omega x)^n}{n!} \] 3. **Conclusion**: Therefore, we can conclude that: \[ S = e^{\omega x} \] Thus, the value of the given series is: \[ \boxed{e^{\omega x}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1+(omega^2x)/(1!)+(omegax^2)/(2!)+(x^3)/(3!) + (omega^2x^4)/(4!) +(omegax^5)/(5!) +(x^6)/(6!) + .... oo =

(1+x^2/(2!) +x^4 /(4!) + .....oo)^(2) - (x+x^3/(3!) +x^(5)/(5!) + ....oo)^(2) =

If 1,x_(1),x_(2),x_(3) are the roots of x^(4)-1=0andomega is a complex cube root of unity, find the value of ((omega^(2)-x_(1))(omega^(2)-x_(2))(omega^(2)-x_(3)))/((omega-x_(1))(omega-x_(2))(omega-x_(3)))

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

Prove that (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16)).... to 2^(n) factors = 2^(2n) .

The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)| , where omega is an imaginary cube root of unity, is

If omega is an imaginary cube root of unity, then find the value of (1+omega)(1+omega^2)(1+omega^3)(1+omega^4)(1+omega^5)........(1+omega^(3n))=

Show that x^(3) +y^(3) = (x + y) (omega x + omega^(2)y) (omega^(2)x + omega y)

(2+omega+omega^2)^3+(1+omega-omega^2)^8-(1-3omega+omega^2)^4=1

Let omega=-1/2+i(sqrt(3))/2 . Then the value of the determinant |(1,1,1),(1,-1-omega^2,omega^2),(1,omega^2,omega^4)| is (A) 3omega (B) 3omega(omega-1) (C) 3omega^2 (D) 3omega(1-omega)