Home
Class 12
MATHS
If x =3 + (4)/(2!) + (8)/(3!) + (16)/(4!...

If `x =3 + (4)/(2!) + (8)/(3!) + (16)/(4!) + .....oo ` then `1/x =`

A

`1/e`

B

e

C

`e^2`

D

`1/e^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given series for \( x \): ### Step 1: Write the series The series is given as: \[ x = 3 + \frac{4}{2!} + \frac{8}{3!} + \frac{16}{4!} + \ldots \] ### Step 2: Rewrite the terms Notice that the terms can be rewritten as follows: - The first term \( 3 \) can be expressed as \( 1 + 2 \). - The second term \( \frac{4}{2!} \) can be rewritten as \( \frac{2^2}{2!} \). - The third term \( \frac{8}{3!} \) can be rewritten as \( \frac{2^3}{3!} \). - The fourth term \( \frac{16}{4!} \) can be rewritten as \( \frac{2^4}{4!} \). Thus, we can express \( x \) as: \[ x = 1 + 2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \ldots \] ### Step 3: Identify the series The series \( 1 + 2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \ldots \) resembles the Taylor series expansion for \( e^x \), specifically: \[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots \] If we let \( x = 2 \), we get: \[ e^2 = 1 + 2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \ldots \] ### Step 4: Conclude the value of \( x \) From the above, we can conclude that: \[ x = e^2 \] ### Step 5: Find \( \frac{1}{x} \) Now, we need to find \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{e^2} \] ### Step 6: Simplify the expression Using the property of exponents, we can express this as: \[ \frac{1}{x} = e^{-2} \] ### Final Answer Thus, the value of \( \frac{1}{x} \) is: \[ \frac{1}{x} = e^{-2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

16/(2!)+(64)/(3!) + (256)/(4!) + ..... oo =

If x =1 +2+(4)/(2!)+(8)/(3!)+(16)/(4!)+… then x^(-1) is equal to

If y= 1+ x + (x^2)/( 2!) + (x^3)/( 3!) + (x^4)/(4!) +…. to oo , show that (dy)/( dx) = y .

If 2x - (1)/(2x) =4 , find : (ii) 8x^(3) - (1)/( 8x^3)

1/2+1/4 +1/(8(2)!)+1/(16(3)!)+1/(32(4)!)+ .....oo =

(1+x^2/(2!) +x^4 /(4!) + .....oo)^(2) - (x+x^3/(3!) +x^(5)/(5!) + ....oo)^(2) =

Show that X^((1)/(2))*X^((1)/(4))*X^((1)/(8)) ... Upto oo = X

lim_(x to 1//2) (8x^(3) - 1)/(16 x^(4) - 1) is equal to

If 3+1/4(3+p)+1/(4^2)(3+2p)+... + oo=8 , then p

intx^(3) log x dx is equal to A) (x^(4) log x )/( 4) + C B) (x^(4))/( 8) ( log x - ( 4)/( x^(2)))+C C) (x^(4))/( 16) ( 4 log x -1) +C D) (x^(4))/( 16) ( 4 log x +1) + C