Home
Class 12
MATHS
If sum(r=1)^(oo) (C^r)/(r!) =1 then C =...

If `sum_(r=1)^(oo) (C^r)/(r!) =1` then C =

A

1

B

2

C

e

D

`log_e2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sum_{r=1}^{\infty} \frac{C^r}{r!} = 1 \), we can follow these steps: ### Step 1: Write out the series The series can be expressed as: \[ \frac{C^1}{1!} + \frac{C^2}{2!} + \frac{C^3}{3!} + \ldots \] ### Step 2: Add 1 to both sides To manipulate the series, we can add 1 to both sides: \[ 1 + \left( \frac{C^1}{1!} + \frac{C^2}{2!} + \frac{C^3}{3!} + \ldots \right) = 1 + 1 \] This simplifies to: \[ 1 + \sum_{r=1}^{\infty} \frac{C^r}{r!} = 2 \] ### Step 3: Recognize the series as an exponential function The left-hand side can be recognized as the Taylor series expansion for \( e^C \): \[ e^C = 1 + \sum_{r=1}^{\infty} \frac{C^r}{r!} \] Thus, we have: \[ e^C = 2 \] ### Step 4: Take the natural logarithm of both sides To solve for \( C \), we take the natural logarithm: \[ \ln(e^C) = \ln(2) \] Using the property of logarithms, this simplifies to: \[ C = \ln(2) \] ### Conclusion Thus, the value of \( C \) is: \[ C = \ln(2) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If C_r stands for .^nC_r and sum_(r=1)^n (r.C_r)/(C_(r-1)) =210 then n= (A) 19 (B) 20 (C) 21 (D) none of these

The value of sum _(r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

If a = sum_(r=1)^(oo) 1/(r^(2)), b = sum_(r=1)^(oo) 1/((2r-1)^(2)), then (3a)/b is equal to _____

If a=sum_(r=1)^oo 1/r^4 then sum_(r=1)^oo 1/((2r-1)^4)=

If sum_(r=1)^(oo)(1)/((2r-1)^(2))=(pi^(2))/(8) , then sum_(r=1)^(oo) (1)/(r^(2)) is equal to

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

(1+x)^25 = sum_(r = 0)^(25) C_r x^r then C_1 - C_3 + C_5 - C_7 + ……-C_25 =

If a=sum_(r=1)^oo(1/r)^2, b=sum_(r=1)^oo1/((2r-1)^2), then a/b= (A) 5/4 (B) 4/5 (C) 3/4 (D) none of these

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

Find the value of sum_(r=0)^(oo) tan^(-1) ((1)/(1 + r + r^(2)))