Home
Class 12
MATHS
p=sum(n=0)^(oo) (x^(3n))/((3n)!) , q=sum...

`p=sum_(n=0)^(oo) (x^(3n))/((3n)!) , q=sum_(n=1)^(oo) (x^(3n-2))/((3n-2)!), r = sum_(n=1)^(oo) (x^(3n-1))/((3n-1)!)` then p + q + r =

A

`e^x`

B

`e^(2x)`

C

`e^(3x)`

D

`e^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sums \( p \), \( q \), and \( r \) and then find \( p + q + r \). ### Step 1: Evaluate \( p \) The series \( p \) is defined as: \[ p = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!} \] This series includes terms where \( n \) takes values starting from 0. The first few terms are: - For \( n = 0 \): \( \frac{x^0}{0!} = 1 \) - For \( n = 1 \): \( \frac{x^3}{3!} \) - For \( n = 2 \): \( \frac{x^6}{6!} \) - For \( n = 3 \): \( \frac{x^9}{9!} \) Thus, we can express \( p \) as: \[ p = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \frac{x^9}{9!} + \ldots \] ### Step 2: Evaluate \( q \) The series \( q \) is defined as: \[ q = \sum_{n=1}^{\infty} \frac{x^{3n-2}}{(3n-2)!} \] This series starts from \( n = 1 \). The first few terms are: - For \( n = 1 \): \( \frac{x^{1}}{1!} \) - For \( n = 2 \): \( \frac{x^{4}}{4!} \) - For \( n = 3 \): \( \frac{x^{7}}{7!} \) Thus, we can express \( q \) as: \[ q = \frac{x^1}{1!} + \frac{x^4}{4!} + \frac{x^7}{7!} + \ldots \] ### Step 3: Evaluate \( r \) The series \( r \) is defined as: \[ r = \sum_{n=1}^{\infty} \frac{x^{3n-1}}{(3n-1)!} \] This series also starts from \( n = 1 \). The first few terms are: - For \( n = 1 \): \( \frac{x^{2}}{2!} \) - For \( n = 2 \): \( \frac{x^{5}}{5!} \) - For \( n = 3 \): \( \frac{x^{8}}{8!} \) Thus, we can express \( r \) as: \[ r = \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \ldots \] ### Step 4: Combine \( p \), \( q \), and \( r \) Now, we can combine \( p \), \( q \), and \( r \): \[ p + q + r = \left( 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \ldots \right) + \left( \frac{x^1}{1!} + \frac{x^4}{4!} + \frac{x^7}{7!} + \ldots \right) + \left( \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \ldots \right) \] When we combine these series, we notice that we are summing all terms of the form \( \frac{x^n}{n!} \) for \( n \geq 0 \). This is the Taylor series expansion for \( e^x \): \[ p + q + r = e^x \] ### Final Result Thus, we conclude that: \[ p + q + r = e^x \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

If a=Sigma_(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma_(n=1)^(oo)(x^(3n-2))/(3n-2!) and C= Sigma_(n=1)^(oo)(x^(3n-1))/(3n-1!) then the value of a^(3)+b^(3)+C^(3)-3abc is

sum_(n=1) ^(oo) (1)/((2n-1)!)=

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

The value of sum_(n=1)^oo\ (n^2+1)/((n+2)n!) is

Find the sum Sigma_(n=1)^(oo)(3n^2+1)/((n^2-1)^3)

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then