Home
Class 12
MATHS
sum(n=1)^(oo) (2n)/(n!)=...

`sum_(n=1)^(oo) (2n)/(n!)=`

A

e

B

2e

C

3e

D

`1/e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{n=1}^{\infty} \frac{2n}{n!} \), we can follow these steps: ### Step 1: Rewrite the Summation We start with the given summation: \[ \sum_{n=1}^{\infty} \frac{2n}{n!} \] We can factor out the constant \(2\): \[ = 2 \sum_{n=1}^{\infty} \frac{n}{n!} \] ### Step 2: Simplify the Term \( \frac{n}{n!} \) Recall that \( n! = n \cdot (n-1)! \). Therefore, we can rewrite \( \frac{n}{n!} \) as: \[ \frac{n}{n!} = \frac{1}{(n-1)!} \] Thus, we can substitute this back into our summation: \[ = 2 \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \] ### Step 3: Change the Index of Summation To simplify the summation further, we can change the index of summation. Let \( m = n - 1 \). When \( n = 1 \), \( m = 0 \), and as \( n \) approaches infinity, \( m \) also approaches infinity. Therefore, we have: \[ = 2 \sum_{m=0}^{\infty} \frac{1}{m!} \] ### Step 4: Recognize the Series The series \( \sum_{m=0}^{\infty} \frac{1}{m!} \) is known to converge to \( e \) (the base of natural logarithms): \[ = 2e \] ### Final Answer Thus, the value of the original summation is: \[ \sum_{n=1}^{\infty} \frac{2n}{n!} = 2e \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of series Sigma_(n=1)^(oo) (2n)/(2n+1)! is

If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

The sum of sum_(n=1)^(oo) ""^(n)C_(2) . (3^(n-2))/(n!) equal

sum_(n=1) ^(oo) (1)/((2n-1)!)=

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

The value of sum_(n=1)^oo\ (n^2+1)/((n+2)n!) is

If 0 lt y lt 1 , then sum_(n=1)^(oo)(1)/(2n-1)*y^(n+1)=……