Home
Class 12
MATHS
If f(x) = x + (x^3)/(3!) +(x^5)/(5!) +(x...

If `f(x) = x + (x^3)/(3!) +(x^5)/(5!) +(x^7)/(7!) + ....` then f'(x) =

A

`sin hx `

B

`cos hx`

C

`"sechx"`

D

`e^x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( f(x) \) given by: \[ f(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \ldots \] ### Step 1: Differentiate \( f(x) \) We will differentiate \( f(x) \) term by term. The derivative of \( x \) is \( 1 \), and for the other terms, we will apply the power rule. \[ f'(x) = \frac{d}{dx}\left(x\right) + \frac{d}{dx}\left(\frac{x^3}{3!}\right) + \frac{d}{dx}\left(\frac{x^5}{5!}\right) + \frac{d}{dx}\left(\frac{x^7}{7!}\right) + \ldots \] Calculating the derivatives: \[ f'(x) = 1 + \frac{3x^2}{3!} + \frac{5x^4}{5!} + \frac{7x^6}{7!} + \ldots \] ### Step 2: Simplify \( f'(x) \) Now, we can simplify each term: \[ f'(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \ldots \] ### Step 3: Recognize the series Notice that the series we have obtained for \( f'(x) \) resembles the Taylor series expansion for \( e^x \) and \( e^{-x} \): The Taylor series for \( e^x \) is: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] And for \( e^{-x} \): \[ e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \] ### Step 4: Combine the series Adding these two series gives: \[ e^x + e^{-x} = 2 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \ldots \] From this, we can see that: \[ f'(x) = \frac{e^x + e^{-x}}{2} = \cosh(x) \] ### Final Answer Thus, we conclude that: \[ f'(x) = \cosh(x) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)-4x+8 , then f(5)=

Let f(x)=(5x+6)/(7x+9) then, f^-1(x) =?

If f(x)=(2x)/(5)+(7)/(3), f^(-1)(x)=

Let f(x)=((x-3)(x+2)(x+5))/((x+1)(x-7)) . Find the intervals were f(x) is positive or negative .

If f(x) = 7x + 9 and g(x) = 7x^(2) - 3 , then (f - g)(x) is equal to

If f(x)= {4 - (x-7)^(3)} , then find f^(-1)(x)=

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

Given that f(x) = 3x + 7 and g(x) = (x^2)/(2) , what is the value of f(g(4)) ?

If f(x)=7x^(4)-2x^(3)-8x-5 find f(-1)

If f(x) = 2 x^3 + 7x - 5 then f^(-1) (4) is :