Home
Class 12
MATHS
(1+1/(2!) + 1/(4!)+ .....)^2 - (1+1/(3!)...

`(1+1/(2!) + 1/(4!)+ .....)^2 - (1+1/(3!) + 1/(5!)+ .....)^2 =`

A

2

B

`-2`

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \((1 + \frac{1}{2!} + \frac{1}{4!} + \ldots)^2 - (1 + \frac{1}{3!} + \frac{1}{5!} + \ldots)^2\), we can use properties of exponential functions and their series expansions. ### Step-by-Step Solution: 1. **Identify the Series**: The first series can be recognized as the even terms of the exponential series for \(e^x\): \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] The series \(1 + \frac{1}{2!} + \frac{1}{4!} + \ldots\) corresponds to \(e^1 + e^{-1}\) divided by 2: \[ \frac{e + e^{-1}}{2} = \cosh(1) \] 2. **Rewrite the First Series**: Thus, we can express the first series as: \[ \left(\frac{e + e^{-1}}{2}\right)^2 \] 3. **Identify the Second Series**: The second series consists of the odd terms of the exponential series: \[ 1 + \frac{1}{3!} + \frac{1}{5!} + \ldots \] This corresponds to \(e^1 - e^{-1}\) divided by 2: \[ \frac{e - e^{-1}}{2} = \sinh(1) \] 4. **Rewrite the Second Series**: Therefore, we can express the second series as: \[ \left(\frac{e - e^{-1}}{2}\right)^2 \] 5. **Combine the Two Series**: Now we can substitute these back into our original expression: \[ \left(\frac{e + e^{-1}}{2}\right)^2 - \left(\frac{e - e^{-1}}{2}\right)^2 \] 6. **Use the Difference of Squares**: We can simplify this using the difference of squares formula \(a^2 - b^2 = (a-b)(a+b)\): \[ \frac{1}{4} \left((e + e^{-1}) - (e - e^{-1})\right)\left((e + e^{-1}) + (e - e^{-1})\right) \] 7. **Simplify the Expressions**: The first part simplifies to: \[ (e + e^{-1}) - (e - e^{-1}) = 2e^{-1} \] The second part simplifies to: \[ (e + e^{-1}) + (e - e^{-1}) = 2e \] 8. **Final Calculation**: Thus, we have: \[ \frac{1}{4} \cdot (2e^{-1}) \cdot (2e) = \frac{1}{4} \cdot 4 = 1 \] ### Conclusion: The final result is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo

The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))^(2) + (1.3.5)/(3!) ((1)/(4))^(3)+ ... to infty , is

(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....

Solve (a) 2/3 + 1/7 (b) 3/10 + 7/15 (c) 4/9 + 2/7 (d) 5/7 + 1/3 (e) 2/5 + 1/6 (f) 4/5 + 2/3 (g) (3/4) (1/3) (h) (5/6) (1/3) (1) 2/3 + 3/4 + 1/2 (1) 1/2 + 1/3 = 1/6 (k) (1) 1/3 + (3) 2/3 (1) (4) 2/3 +(3) 1/4 (m) ((16)/5))(7/5)

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

Show that 1 + 1/2.(3/5) + (1.3)/(2.4) (3/5)^2 + (1.3.5)/(2.4.6) (3/5)^3 + …… = sqrt([5/2])

(1/(1!)+(1)/(2!)+(1)/(4!)+(1)/(6!)+…)-(1/(1/(1)+(1)/(3!)+(1)/(5!)+…)) is equal to

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,

1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo